Построим простейшую модель, описывающую военную политику некого княжества в период междоусобных войн. Пусть параметром порядка являются военные расходы – переменная xn, где n – номер месяца, в котором они были сделаны. При пассивной военной политике военных походов не предпринимается, военные расходы уменьшаются (см. рис.11)
xn+1 = l xn(1-xn), l<1, x1= x' (10)
Предположим также, что мы имеем дело с сильным княжеством, которое не ждет больших неприятностей от соседей. С падением расходов возникают проблемы с содержанием военной дружины, падает авторитет князя, начинается борьба за власть. Поэтому, когда xn< e, надо предпринимать активные действия. Допустим, что с вероятностью p1 принимается решение о военном походе на северных, а с вероятностью p2 – планируется "организовать систему коллективной безопасности" с южными соседями. Такую ситуацию описывает отображение (10), заданное на интервале e ё xn ё 1 (G1) и джокер второго рода, заданный в области 0 ё xn < e (G2) . С вероятностью p1 джокер переносит значение xn в точку a1 (поход на северных), с вероятностью p2 – в точку a2 (экспедиция к южным). Северные расположены дальше, поэтому и затраты будут больше. В отсутствие джокера xn® 0 при n ®Ґ и военный компонент политики перестает быть значимым. При наличии джокера в системе периодически возникают военные походы, ход каждого из которых (точнее, его финансирование) вполне предсказуем. Однако сказать, куда же мы направимся в следующий раз, вразумлять южных или укрощать северных, нельзя. В реальной ситуации это, разумеется, зависит от темперамента князя, мудрости бояр, взглядов его супруги и советника по национальной безопасности, а также от множества других факторов, которые нам неизвестны. Именно эту неопределенность и отражает джокер. Отметим, что множество других факторов, характеризующих княжество, будет зависить от уровня военных расходов, который может оказаться параметром порядка.
Обратим внимание на то, что джокер может радикально изменить ход процесса – сделать установившийся процесс периодическим или хаотическим, или, напротив, внести упорядоченность в поведение системы. Он может приводить к эффектам, которые качественно отличаются от явлений, наблюдаемых в динамических системах с малым шумом. Анализ систем с джокерами ставит множество интересных математических задач [24]. С другой стороны, поиск джокеров, характеризующих историческую реальность, также может оказаться глубокой содержательной проблемой.
Пассионарии стремятся изменить окружающее и способны на это. Это они организуют далекие походы, из которых возвращаются немногие.
В настоящее время ряд крупных исторических событий объясняется исследователями в рамках теории этногенеза, развитой Л.Н.Гумилевым. В соответствии с этой теорией, развитие этноса в большой степени предопределено внутренними причинами, его саморазвитием [9]. Ключевой переменной, характеризующей стадию развития этноса, является уровень его пассионарности.
Эта величина определяется числом людей, которые способны в ущерб собственному благополучию или безопасности менять ценности, стандарты поведения, отношения, создавать новое. "При этом пассионарии выступают не только как непосредственные исполнители, но и как организаторы. Вкладывая свою избыточную энергию в организацию и управление соплеменниками на всех уровнях социальной иерархии, они, хотя и с трудом, вырабатывают новые стереотипы поведения, навязывают их всем остальным и создают таким образом новую этническую систему, новый этнос, видимый для истории", – пишет Л.Н.Гумилев.
В ходе развития меняются императивы развития этноса, начиная от стремления к переустройству, проходя через поиск удачи, стремление к идеалу знания и красоты и далее к идеалу победы. Типичная зависимость пассионарности этноса от времени, выявленная Л.Н.Гумилевым, представлена на рис.12.
Рис. 12. Характерная зависимость пассионарности этноса от времени. Pki – уровень пассионарного напряжения системы. Качественные характеристики этого уровня ("жертвенность" и т.д.) следует рассматривать как некую усредненную "оценку" представителей этноса. Одновременно в составе этноса есть люди, обладающие и другими отмеченными на рис. характеристиками, но господствует один тип людей;
i – индекс уровня пассионарного напряжения системы, соответствующего определенному императиву поведения; i=-2, -1, ..., 6; при i=0 уровень пассионарного напряжения системы соответствует гомеостазу;
k – количество субэтносов, составляющих систему на определенном уровне пассионарного напряжения; k=n+1, n+2, ..., n+21, где n – первоначальное количество субэтносов в системе.