В результате свершения события вероятность реализации одного из результатов окажется равной 1, а вероятность того, что наступит какой-либо другой исход, окажется равной нулю. Набор вероятностей p — вероятностный вектор — коллапсирует к одному из единичных векторов, то есть он коллапсирует к одному из ортов системы координат, сформированных возможными исходами события.
Итак, перед самым событием существует некоторый вектор р, характеризующий распределение возможностей реализации тех или иных возможных результатов события. Этот вектор может быть назван вектором вероятности будущего события, n-мерный вектор p перед событием может, в принципе, принимать любые значения на n-1 — мерном многообразии, имеющем уравнение:
Предыдущий опыт может приближенно подсказать точку на многообразии, соответствующую моменту, предшествующему изучаемому нами событию, однако мы не можем предсказать точно, что произойдет в результате события.
Совсем по иному выглядит картина после происшедшего события. Событие произошло. Определенный результат реализовался, остальные не реализовались. Вектор p принял одно из n возможных значений. Можно сказать, что событие подействовало как оператор, резко уменьшивший область допустимых значений вектора p — c n— 1 — мерного многообразия — до одной из точек.
То же самое можно сформулировать и по-другому. Соотношения вероятностей попадания системы в одно из возможных состояний до и после события резко изменились. До события система еще имела возможность попасть в любое из допустимых состояний. После события возможность попадания во все состояния, кроме одного, оказались равными нулю.
Наблюдатель системы приобрёл значительную новую информацию не только о настоящем, но и о будущем системы. Здесь, как и ранее для случая с двумя исходами интуитивно появляется понятие информации как результата отождествления системы, которая до свершения события могла с некоторой вероятностью оказаться в одном из возможных состояний с некоторым конкретным состоянием.
Нашему рассмотрению может быть дана и другая математическая интерпретация. Пусть мы имеем фазовое пространство взаимодействующих структур, имеющее n аттракторов — зон притяжения; существует некоторая точка (или область), отделяющая друг от друга бассейны притяжения этих аттракторов. Перед событием фазовое состояние системы взаимодействующих структур попадает в указанную точку или область, выйдя из которой в процессе события оно попадает в бассейн притяжения того или иного аттрактора, откуда ей уже не вернуться назад.
В классической теории вероятностей вместо вектора/) вводится некоторая функция на множестве возможных исходов бифуркационного (случайного) события.
Рассматривается в элементарном случае конечное множество элементов , которые мы будем называть элементарными исходами бифуркационного события и множество подмножеств из . Элементы множества будем называть совокупностями исходов бифуркационного события, а — пространством элементарных исходов бифуркационного события.
Каждому элементу из поставлено в соответствие неотрицательное действительное число p1
, — вероятность реализации i-го исхода бифуркационного события. При этом выполняется условиеВ этом случае p1
, …, pn суть вероятности элементарных исходов 1, …, n или просто элементарные вероятности.Каждому множеству A из поставлено в соответствие неотрицательное действительное число P(A). Это число называется вероятностью реализации совокупности исходов. Оно определяется как сумма вероятностей элементарных исходов, входящих в A:
где ik
— номера элементарных исходов, входящих в совокупность Aj.Если P(A) > 0, то частное Р(В\А) = Р(АВ)/Р(А), где AB — пересечение множеств А и В, называется условной вероятностью реализации совокупности исходов В при условии реализации совокупности исходов. Отсюда непосредственно следует, что Р(АВ) = Р(В\А)Р(А).
Заключение по индукции даёт общую формулу Р(А1
А2…Аn) = Р(А1)Р(А2\А1)P(A3\A2\A1)…Р(Аn\А1…Аn-1) (теорема умножения).Отсюда получаем Р(А\B) = Р(А)Р(В\А)/Р(B), и далее формулу полной вероятности Р(В) = P(A1
)P(B\A1) + P(A2)P(B\A2) +…+ P(Аn)P(B\Аn),где А1
+А2+…+ Аn = и В — произвольная совокупность исходов, и формулу Байеса:Введение вектора = {1
}, где i =рi, позволяет вместо некоторой аддитивной меры, рассматривать метрический вектор единичной длины в евклидовом пространстве. В этом случае вся изложенная выше теория может быть переформулирована в терминах амплитуды вероятности.Каждому множеству А из может быть поставлено в соответствие неотрицательное действительное число Аp(А). Это число называется амплитудой вероятности реализации совокупности исходов А. Оно определяется как корень квадратный из суммы квадратов амплитуд вероятности элементарных исходов, входящих в А:
где ik
— номера элементарных исходов, входящих в совокупность Аj. Ар = 1. Если А и B не пересекаются, то [Ap(A+B)]2 =[Ар(А)]2 + [Ар(В)]2.