Gs- и Gi-белки оказывают разное влияние на активность АЦ, участвующей в регуляции внутриклеточной концентрации цАМФ и, как следствие, на регуляцию активности цАМФ-зависимых протеинкиназ, а Gt-белок (трансдуцин) активирует фосфодиэстеразу цГМФ (что приводит к повышению скорости выхода калия из клетки и гиперполяризации мембраны). Таким образом, все гетеротриммерные G-белки регулируют системы вторичных посредников (цАМФ, цГМФ, фосфатидилинозитол, диацилглицерол, Са2+
и т. д.), являющихся внутриклеточными регуляторами тех процессов, которые в конечном итоге выражаются в клеточном ответе на действие гормонов и других сигнальных стимулов.В гуморальной регуляции выделяют два основных механизма передачи информации посредством сигнальных молекул: паракринный (местная саморегуляция) и эндокринный (системная гормональная регуляция) путь. Общим для этих путей является то, что сигнальные молекулы в отличие от молекул секретов, выделяемых в протоки, (экзокринный способ секреции), синтезируются и секретируются специализированными клетками непосредственно в межклеточное пространство и в последующем попадают в кровь (эндокринный способ секреции). Само собой разумеется, что эволюция системы межклеточной сигнализации прошла долгий путь, прежде чем появились специализированные клетки эндокринной секреции. Клетки отдельных тканей и органов приобрели в процессе эволюции способность синтезировать сигнальные молекулы, позволяющие индуцировать согласованные действия других клеток при выполнении тех или иных функций.
Как уже говорилось ранее, сигнальные молекулы, секретируемые клетками, попадая в межклеточное пространство, могут оказывать специфическое влияние на клетки, находящиеся в непосредственной близости от них. При этом сигнальная молекула просто диффундирует через межклеточное пространство к клетке-мишени, т. е. не является гормоном в классическом виде, поскольку не переносится кровью. Когда такие носители информации воздействуют на соседние клетки, их называют паракринными гормонами или гормонами местного действия. Иногда их также называют тканевыми гормонами. В принципе к таким веществам можно отнести и классические нейромедиаторы, и биологически активные вещества, с той лишь разницей, что источником химической информации в этом случае являются не только специализированные клетки внутренней секреции, но и нервные или другие клетки. Нейромедиаторы не поступают в кровь, а диффундируют через узкую синаптическую щель в сторону постсинаптической мембраны клетки. На постсинаптической мембране нейромедиатор, как и гормон, связывается со специфическим рецептором. Точно так же и БАВ: например, гистамин взаимодействуют с клеточными специфическими рецепторами, вызывая физиологический эффект. Эти вещества оказывают регулирующее влияние на функции клеток и тканей в целом за счет изменения их биофизических свойств (проницаемость мембран, мембранный заряд), энергетического обмена, клеточной рецепции (количество и сродство рецепторов), активности ферментативных реакций, образования вторичных посредников.
Паракринный путь воздействия сигнальных молекул обеспечивает местную регуляцию (саморегуляцию). Она осуществляется посредством:
— Кейлонов — простых белков и гликопротеидов, подавляющих деление клеток и синтез ДНК.
— Метаболитов — неспецифических регуляторов обменных процессов по приницу обратной связи (активация тканевого кровотка при повышении концентрации молочной кислоты).
— Биологически активных веществ (тканевых гормонов) — метаболитов специализированных клеток со специфическим действием: а) биогенные амины (гистамин, серотонин), б) кинины (брадикинин, каллидин), в) эйкозаноиды (простагландины, простациклины, тромбоксаны, лейкотриены), г) цитокины (интерлейкины, факторы роста, факторы некроза опухоли, колониестимулирующие факторы, факторы транскрипции и супрессии и др.).
Биогенные амины — продукты декарбоксилирования аминокислот.
Серотонин, образующийся из 5-окситриптофана в тромбоцитах и других клетках, обладает сосудосуживающим действием, оказывает влияние на температуру тела, дыхание, почечную фильтрацию, является медиатором нервных процессов в ЦНС.
— Дофамин, образующийся из тирозина (через ДОФА-3,4-диоксифенилаланин) в симпатических нейронах и хромафинных клетках надпочечников, является предшественником катехоламинов (норадреналина и адреналина), служит нейромедиатором в некоторых аксонах периферических нервов и многих нейронов ЦНС (черное вещество, средний мозг, гипоталамус).
— Гистамин, образующийся из гистидина в тучных клетках соединительной ткани большинства органов, имеет широкий спектр биологического действия: дилатация и повышение проницаемости стенки сосудов (капилляры и артериолы), сокращение гладкомышечных клеток (ГМК), бронхоспазм, является медиатором боли и немедленных аллергических и воспалительных реакций.