Читаем Системное программирование в среде Windows полностью

Модель сигналов, используемая в UNIX, значительно отличается от SEH. Сигналы могут быть пропущены или игнорированы, и логика их работы иная. Тем не менее, у этих моделей имеются и общие черты.

Значительная часть поддержки обработки сигналов в UNIX обеспечивается библиотекой С, ограниченная версия которой доступна также под управлением Windows. Во многих случаях в программах Windows вместо сигналов можно воспользоваться обработчиками управляющих сигналов консоли, описанными в конце данной главы.

Некоторые сигналы соответствуют исключениямWindows.

Перечень в некоторой мере ограниченных соответствий "сигнал-исключение" представлен ниже:

• SIGILL — EXCEPTION_PRIV_INSTRUCTION

• SIGSEGV — EXCEPTION_ACCESS_VIOLATION

• SIGFPE — семь различных исключений, связанных с выполнением операций над числами с плавающей точкой, например EXCEPTION_FLT_DIVIDE_BY_ZERO

• SIGUSR1 и SIGUSR2 — исключения, определяемые приложением

Функции RaiseException соответствует функция библиотеки С raise.

В Windows сигналы SIGILL, SIGSEGV и SIGFPE не генерируются, хотя функция raise может генерировать один из них. Сигнал SIGINT в Windows не поддерживается.

Функция UNIX kill (kill не входит в состав стандартной библиотеки С), которая посылает сигнал другому процессу, может быть сопоставлена функции Windows GenerateConsoleCtrlEvent (глава 6). Для ограниченного варианта SIGKILL в Windows имеются аналоги в виде функций TerminateProcess и TerminateThread, с помощью которых один процесс (или поток) может уничтожить другой, хотя при использовании этих функций необходимо соблюдать осторожность (см. главы 6 и 7).

<p>Обработчики завершения</p>

Обработчики завершения служат в основном тем же целям, что и обработчики исключений, но выполняются, когда поток покидает блок в результате нормального выполнения программы, а также когда возникает исключение. С другой стороны, обработчик завершения не может распознавать исключения.

Обработчик завершения строится с использования ключевого слова __finally в операторе try…finally. Структура этого оператора аналогична структуре оператора try…finally, но в ней отсутствует выражение фильтра. Как и обработчики исключений, обработчики завершения предоставляют удобные возможности для закрытия дескрипторов, освобождения ресурсов, восстановления масок и выполнения иных действий, направленных на восстановление известного состояния системы после выхода из блока. Например, программа может выполнять операторы return внутри блока, оставляя всю работу по "уборке мусора" обработчику завершения. Благодаря этому отпадает необходимость во включении кода очистки в код самого блока или переходе к коду очистки при помощи оператора goto.

__try {

 /* Блок кода. */

} _finally {

 /* Обработчик завершения (блок finally). */

}

<p>Выход из try-блока</p>

Обработчик завершения выполняется всякий раз, когда в соответствии с логикой программы осуществляется выход из try-блока по одной из следующих причин:

• Достижение конца try-блока и "проваливание" в обработчик завершения.

• Выполнение одного из следующих операторов таким образом, что происходит выход за пределы блока:

return

break

goto[19]

longjmp 

continue

__leave[20]

• Исключение.

<p>Аварийное завершение</p>
Перейти на страницу:

Похожие книги

C++: базовый курс
C++: базовый курс

В этой книге описаны все основные средства языка С++ - от элементарных понятий до супервозможностей. После рассмотрения основ программирования на C++ (переменных, операторов, инструкций управления, функций, классов и объектов) читатель освоит такие более сложные средства языка, как механизм обработки исключительных ситуаций (исключений), шаблоны, пространства имен, динамическая идентификация типов, стандартная библиотека шаблонов (STL), а также познакомится с расширенным набором ключевых слов, используемым в .NET-программировании. Автор справочника - общепризнанный авторитет в области программирования на языках C и C++, Java и C# - включил в текст своей книги и советы программистам, которые позволят повысить эффективность их работы. Книга рассчитана на широкий круг читателей, желающих изучить язык программирования С++.

Герберт Шилдт

Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных