Читаем Системное программное обеспечение. Лабораторный практикум полностью

{ Деструктор для удаления синтаксического стека }

begin

Clear; { Очищаем стек }

inherited Destroy; { Вызываем деструктор базового класа }

end;

procedure TSymbStack.Clear;

{ Функция очистки синтаксического стека }

var i: integer;

begin { Удаляем все символы из стека }

for i:=Count-1 downto 0 do TSymbol(Items[i]). Free;

inherited Clear; { Вызываем функцию базового класса }

end;

function TSymbStack.GetSymbol(iIdx: integer): TSymbol;

{ Функция выборки символа по номеру от вершины стека }

begin Result:= TSymbol(Items[iIdx]); end;

function TSymbStack.TopLexem: TLexem;

{ Функция, возвращающая самую верхнюю лексему в стеке }

var i: integer;

begin

Result:= nil; { Начальный результат функции пустой }

for i:=Count-1 downto 0 do{Для символов от вершины стека}

if Symbols[i].SymbType = SYMB_LEX then

begin { Если это терминальный символ }

Result:= Symbols[i].Lexem; {Берем ссылку на лексему}

Break; { Прекращаем поиск }

end;

end;

function TSymbStack.Push(lex: TLexem): TSymbol;

{ Функция помещения лексемы в синтаксический стек }

begin { Создаем новый терминальный символ }

Result:= TSymbol.CreateLex(lex);

Add(Result); { Добавляем его в стек }

end;

function TSymbStack.MakeTopSymb: TSymbol;

{ Функция, выполняющая свертку. Результат функции:

nil – если не удалось выполнить свертку, иначе – ссылка

на новый нетерминальный символ (если свертка выполнена).}

var

symCur: TSymbol; {Текущий символ стека}

SymbArr: TSymbArray;{Массив хранения символов правила}

i,iSymbN: integer;{Счетчики символов в стеке и в правиле}

sRuleStr: string; {Строковое представление правила}

{ Функция добавления символа в правило }

procedure AddToRule(const sStr: string;{Строка символа}

sym: TSymbol{Тек. символ});

begin

symCur:= sym; { Устанавливаем ссылку на текущий символ }

{ Добавляем очередной символ в массив символов правила }

SymbArr[iSymbN]:= Symbols[i];

{ Добавляем его в строку правила (слева!) }

sRuleStr:= sStr + sRuleStr;

Delete(i); { Удаляем символ из стека }

Inc(iSymbN); { Увеличиваем счетчик символов в правиле }

end;

begin

Result:= nil; { Сначала обнуляем результат функции }

iSymbN:= 0; { Сбрасываем счетчик символов }

symCur:= nil; { Обнуляем текущий символ }

sRuleStr:= ; { Сначала строка правила пустая }

for i:=Count-1 downto 0 do{ Выполняем алгоритм }

begin { Для всех символов начиная с вершины стека }

if Symbols[i].SymbType = SYMB_SYNT then

{ Если это нетерминальный символ, то добавляем его

в правило, текущий символ при этом не меняется }

AddToRule(Symbols[i].SymbolStr,symCur)

else { Если это терминальный символ }

if symCur = nil then {и текущий символ пустой }

{ Добавляем его в правило и делаем текущим }

AddToRule(LexTypeInfo(Symbols[i].Lexem.LexType),

Symbols[i])

else { Если это терминальный символ и он связан

отношением "=" с текущим символом }

if GramMatrix[Symbols[i].Lexem.LexType,

symCur.Lexem.LexType] = = then

{ Добавляем его в правило и делаем текущим }

AddToRule(LexTypeInfo(Symbols[i].Lexem.LexType),

Symbols[i])

else { Иначе – прерываем цикл, дальше искать не нужно }

Break;

if iSymbN > RULE_LENGTH then Break; { Если превышена

максимальная длина правила, цикл прекращаем }

end;

if iSymbN <> 0 then

begin { Если выбран хотя бы один символ из стека, то

ищем простым перебором правило, у которого строковое

представление совпадает с построенной строкой }

for i:=1 to RULE_NUM do

if GramRules[i] = sRuleStr then{Если правило найдено,}

begin { создаем новый нетерминальный символ }

Result:= TSymbol.CreateSymb(i,iSymbN,SymbArr);

Add(Result); { и добавляем его в стек. }

Break; { Прерываем цикл поиска правил }

end;

{ Если не был создан новый символ (правило не найдено),

надо удалить все исходные символы, это ошибка }

if Result = nil then

for i:=0 to iSymbN-1 do SymbArr[i].Free;

end;

end;

function BuildSyntList(

const listLex: TLexList{входная таблица лексем};

symbStack: TSymbStack{стек для работы алгоритма}

): TSymbol;

{ Функция, выполняющая алгоритм «сдвиг-свертка».

Результат функции:

– нетерминальный символ (корень синтаксического дерева),

если разбор был выполнен успешно;

– терминальный символ, ссылающийся на лексему, где была

обнаружена ошибка, если разбор выполнен с ошибками. }

var

i,iCnt: integer; {счетчик лексем и длина таблицы лексем}

lexStop: TLexem; { Ссылка на начальную лексему }

lexTCur: TLexType; { Тип текущей лексемы }

cRule: char;{ Текущее отношение предшествования }

begin

Result:= nil; { Сначала результат функции пустой }

iCnt:= listLex.Count-1; { Берем длину таблицы лексем }

{ Создаем дополнительную лексему «начало строки» }

lexStop:= TLexem.CreateInfo('Начало файла',0,0,0);

try { Помещаем начальную лексему в стек }

symbStack.Push(lexStop);

i:= 0; { Обнуляем счетчик входных лексем }

while i<=iCnt do { Цикл по всем лексемам от начала }

begin { до конца таблицы лексем }

{ Получаем тип лексемы на вершине стека }

lexTCur:= symbStack.TopLexem.LexType;

{ Если на вершине стека начальная лексема,

а текущая лексема – конечная, то разбор завершен }

if (lexTCur = LEX_START)

and (listLex[i].LexType = LEX_START) then Break;

{ Смотрим отношение лексемы на вершине стека

и текущей лексемы в строке }

cRule:= GramMatrix[lexTCur,listLex[i].LexType];

Перейти на страницу:

Похожие книги

Встраиваемые системы. Проектирование приложений на микроконтроллерах семейства 68HC12/HCS12 с применением языка С
Встраиваемые системы. Проектирование приложений на микроконтроллерах семейства 68HC12/HCS12 с применением языка С

В книге последовательно рассматриваются все этапы создания встраиваемых систем на микроконтроллерах с применением современных технологий проектирования. Задумав эту книгу, авторы поставили перед собой задачу научить читателя искусству создания реальных устройств управления на однокристальных микроконтроллерах. Издание содержит материал, охватывающий все вопросы проектирования, включает множество заданий для самостоятельной работы, примеры программирования, примеры аппаратных решений и эксперименты по исследованию работы различных подсистем микроконтроллеров. Данная книга является прекрасным учебным пособием для студентов старших курсов технических университетов, которые предполагают связать свою профессиональную деятельность с проектированием и внедрением встраиваемых микропроцессорных систем. Книга также будет полезна разработчикам радиоэлектронной аппаратуры на микроконтроллерах.

Дэниэл Дж. Пак , Стивен Ф. Барретт

Программирование, программы, базы данных / Компьютерное «железо» / Программирование / Книги по IT
Секреты приложений Google
Секреты приложений Google

Даже продвинутые пользователи Интернета не подозревают о тех огромных возможностях, которые предоставляют сервисы Google. Автор рассказывает о таких «секретах» сервисов, которые просто немедленно хочется использовать! Создавать сайты и презентации, бродить по улочкам Парижа, изучать звездное небо – все это доступно каждому, кто сидит у экрана монитора и имеет доступ в Интернет. Книга научит вас работать с веб-приложениями и тысячекратно увеличить свои возможности с помощью новейших технологий. Она написана легким, доступным языком и не требует от читателя наличия каких-либо специальных знаний. Книга содержит множество примеров, иллюстраций и будет полезна всем, кто не стоит на месте и стремится сделать свою жизнь более насыщенной и интересной.

Денис Балуев , Денис Игоревич Балуев

Программирование, программы, базы данных / Интернет / Программное обеспечение / Книги по IT