Программирование НПА REMUS 100 осуществляется с помощью переносного компьютера, для навигации используются радио- и акустические маячки. Встроенный компьютер может сам выбрать оптимальный метод определения маршрута. На рис. 30 представлен аппарат REMUS 100. Его основные параметры приведены в табл. 1.
Также за рубежом разрабатывается большое количество противоминных систем авиационного базирования, включающих в свой состав буксируемые (опускаемые) необитаемые аппараты.
В качестве примера можно привести необитаемый аппарат AN/AQS-20A (рис. 31), который может буксироваться вертолетом или надводным носителем, в том числе ННА. Его система обнаружения мин включает целый ряд датчиков, в том числе датчики бокового обзора (SLS), вспомогательную РЛС для перекрытия мёртвых зон (GFS), акустическую (звуковую) систему поиска (VSS), головную гидроакустическую антенну (FLS) и систему электрооптической идентификации (EOID) [24].
Еще один пример использования в качестве носителя для буксируемых поисковых систем необитаемого надводного аппарата проиллюстрирован на рис. 32. Важным преимуществом подобных систем является отсутствие риска для экипажа носителя, который может возникать не только из-за работы в миноопасном районе, но также и из-за возможного противодействия проведению разминирования со стороны противника.
Вообще, можно отметить активное наращивание возможностей по борьбе с морской минной угрозой в ВМС США, причем не только за счет применения необитаемых аппаратов. Это вызвано тем фактом, что, начиная с 1950 года, было уничтожено или повреждено 18 боевых кораблей американских ВМС, причем 14 из них — в результате подрыва на минах. Стоимость этих мин оценивается в 11,5 тыс. долларов, тогда как ущерб, причиненный США, составил несколько десятков миллионов долларов [25].
Приведенные в настоящей главе в качестве примеров системы представляют собой только небольшую часть зарубежных разработок, направленных на создание нового класса необитаемых боевых подводных роботов, способных эффективно противодействовать образцам подводного вооружения и военной техники, созданным в XX веке.
2. Возможное решение проблемы — асимметричное действие
Рассмотренная в предыдущей главе информация свидетельствует о растущей угрозе национальной безопасности России в виде стремительно развивающихся необитаемых аппаратов разных типов и назначений. Исходя из понимания проблемы, возникает закономерный вопрос: «Что делать?». Как можно нейтрализовать возникающую угрозу и какие системы необходимо развивать в России, чтобы не «деградировать» в военном отношении до уровня «Оранджландии»?
Очевидно, что при существующем уровне финансирования разработок необитаемых морских систем, а также отсутствии однозначной мотивации как можно скорее принять на вооружение флота подобные аппараты, надеяться на быструю ликвидацию существующего разрыва в технологиях не приходится. Именно поэтому в данной работе идет речь об «асимметричных» действиях против необитаемых аппаратов. Постараемся разобраться, в чем они могут состоять, и что понимается под самим понятием «асимметричность».
Прежде всего, хотелось бы еще раз повторить мысль, высказанную во введении. Асимметричное действие никаким образом не подразумевает отказ от симметричных действий, то есть, в рассматриваемом случае, от развития отечественных необитаемых аппаратов, а наоборот, только дополняет их, позволяя получить более высокую результативность.
В данной краткой главе будет рассмотрен ряд публикаций военных и не только специалистов по вопросу асимметричного противодействия превосходящим вооруженным силам противника.
Рассмотрим более подробно понятие «асимметричное действие» применительно к ведению боевых действий или к обеспечению военного паритета.
Асимметричная война (англ. Asymmetric Warfare) характеризуется существенной разницей в военной силе или возможности использования стратегий и тактик сторонами-участниками [25].