Итак, LIGO и Virgo смогут зарегистрировать гравитационные волны пары сливающихся нейтронных звезд, только если катастрофа происходит не далее нескольких сотен миллионов световых лет. Если при столкновении излучаются очень узконаправленные волны, возможны два варианта: или один из пучков направлен на нас (вероятность чего мала), или оба проходят мимо Земли (что гораздо более вероятно). В первом случае мы рассчитываем увидеть невероятно яркий короткий гамма-всплеск и выраженное послесвечение на многих длинах волны. Подобное событие, безусловно, будет зарегистрировано орбитальными гамма-обсерваториями. Во втором случае важно знать, какое именно изотропное излучение должно испускаться при этом событии.
Теоретики считают, что могут ответить на этот вопрос. Сразу после столкновения звезд материя, выброшенная в пространство, является чрезвычайно горячей. Более того, она не имеет той немыслимой плотности, как в бытность нейтронной звездой. Внезапно возникают условия для возобновления ядерных реакций, что и происходит. Разрушающиеся скопления плотно упакованных нейтронов разлетаются во все стороны. Отдельные нейтроны распадаются с образованием протонов – положительно заряженных частиц. Протоны и нейтроны образуют массивные фрагменты радиоактивной материи, в которой мгновенно начинается распад на более мелкие и стабильные атомные ядра. Радиоактивные элементы быстро расходуются, испуская мощное излучение, главным образом в красном и инфракрасном диапазонах. Остается расширяющееся, медленно остывающее облако атомов тяжелых элементов, в том числе драгоценных металлов – золота и платины.
По расчетам Эдо Бергера из Гарвард-Смитсоновского центра астрофизики в Кембридже (Массачусетс), при столкновении двух нейтронных звезд может образоваться чистое золото общей массой не менее десяти масс Луны. Практически весь имеющийся в космосе запас этого драгоценного металла – включая золото в вашем обручальном кольце, браслете или часах – образовался, вероятно, при столкновениях нейтронных звезд.
По оценкам, в ядерном котле после столкновения выделяется меньше энергии, чем при обычном взрыве сверхновой. Но ее примерно в тысячу раз
Летом 2013 г. Ниал Танвир и его коллеги из Лейчестерского университета в Великобритании впервые наблюдали предсказанное моделью излучение килоновой вследствие короткого гамма-всплеска[110]
. Всплеск был зарегистрирован 3 июня в галактике, удаленной почти на 4 млрд св. лет. С помощью космического телескопа «Хаббл» команда Танвира наблюдала угасание свечения шара 12 июня. Это открытие принято считать надежным свидетельством того, что короткие гамма-всплески являются результатом слияния нейтронных звезд. Поскольку излучение килоновой распространяется во всех направлениях, это электромагнитное проявление можно ожидать при слиянии с участием нейтронной звезды,Итак, мы знаем, какой отголосок события искать при регистрации гравитационной волны. Если возмущения пространственно-временного континуума вызваны слиянием ЧД, скорее всего, не будет вообще никаких электромагнитных последствий. Если же хотя бы одним из сливающихся объектов является нейтронная звезда, можно рассчитывать на короткую высокоэнергетическую вспышку голубого света в самом начале с последующим медленно затухающим свечением в красном и инфракрасном диапазонах. На поздней стадии расширяющаяся материя может также излучать радиоволны. Разумеется, это не более чем современное теоретическое представление. Вселенная, возможно, приготовила для нас еще много сюрпризов.
Важная дополнительная информация, которую принесет открытие электромагнитных последствий, – это расстояние до источника гравитационных волн. На сегодняшний день существует большая неопределенность в оценке этих дистанций для обеих регистраций, GW150914 и GW151226. Она целиком основывается на наблюдаемой амплитуде волн и на теоретических моделях. Если же обнаружится электромагнитное последствие в далекой галактике, легко будет определить расстояние до нее. Все, что потребуется, – измерить красное смещение, как объяснялось в главе 9. Зная расстояние, мы сумеем вычислить энергетику столкновения, в том числе энергетику гравитационных волн. Это позволит протестировать и усовершенствовать существующие модели.