Читаем Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии полностью

Инструменты поиска электромагнитных проявлений не должны ограничиваться наземными оптическими и радиотелескопами. Весьма вероятно, что первого успеха достигнет космическая обсерватория. Самое высокоэнергетическое электромагнитное излучение – гамма и рентгеновское – в принципе невозможно наблюдать с Земли. Несколько групп специалистов по гамма- и рентгеновской астрономии также заключили соглашение с коллаборацией LIGO – Virgo. Они готовы направить космические телескопы в любом направлении, которое укажут лазерные интерферометры.

Например, спутник НАСА Swift, запущенный в ноябре 2004 г., уже некоторое время участвует в поиске[111]. Swift предназначен для регистрации и изучения гамма-всплесков. Он оборудован детектором гамма-излучения, рентгеновским телескопом и телескопом ультрафиолетового/оптического диапазонов. Самостоятельно он может регистрировать гамма-всплески, определять их положение в небе и искать оптические проявления. Главный исследователь проекта Нил Герелс из Центра управления космическими полетами им. Годдарда в Гринбелте (Мэриленд) рассказал, что эта успешная миссия может также заниматься быстрым поиском рентгеновских, ультрафиолетовых или оптических проявлений источников гравитационных волн. В прошлом Swift выполнял дополняющие наблюдения для ряда инициирующих событий LIGO/Virgo и даже посвятил несколько дней событию Большого Пса – печально знаменитому слепому внедрению в сентябре 2010 г., описанному в главе 11.

Герелс не сомневался, что решающую роль мог бы сыграть еще один инструмент НАСА, космический гамма-телескоп Fermi[112], запущенный в июне 2008 г. Его детекторы гамма-излучения с широким углом обзора охватывают почти полнеба. Если сигнал гравитационной волны сопровождается выбросом высокоэнергетического гамма-излучения, существует примерно 50 %-ная вероятность, что Fermi его заметит. Тогда Swift может провести последующее за регистрацией Fermi исследование, чтобы точнее определить местоположение события. В считаные минуты наземные оптические телескопы начнут поиск в намного меньшей области пространства, чем могли бы указать им только LIGO и Virgo. (Очень жаль, что Нил Герелс уже не увидит результатов – он скончался в начале 2017 г. в возрасте 64 лет.)

На что способны наземные инструменты? Некоторые большие телескопы оборудованы широкоугольными камерами для многократного картирования неба. Вы уже познакомились с телескопом в Паранале, имеющим камеру 268 Мп. Есть еще камера «Темная энергия» разрешением 520 Мп на четырехметровом телескопе им. Виктора Бланко в межамериканской обсерватории Сьерро-Тололо в Чили, а также две камеры Pan-STARRS с матрицами в 1,4 гигапикселя, установленные на 1,8-метровые телескопы обсерватории Халеакала на гавайском острове Мауи. Однако эти большие инструменты разрабатывались не для моментальных дополняющих исследований транзиентных объектов. Менее крупные приборы для этого гораздо удобнее. Один из таких небольших инструментов работает на знаменитой площадке в Южной Калифорнии – в Паломарской обсерватории[113].

На горе Паломар к северо-востоку от Сан-Диего легко проглядеть относительно небольшой телескоп Самуэля Ошина. Туристы, заехав на гору, дивятся на огромный купол 5,1-метрового телескопа Хейла, с галереи для посетителей бросают взгляд на гигантский рефлектор, покупают сувенир в магазинчике и возвращаются к своим машинам. Это закономерно, поскольку телескоп Хейла (названный в честь астрофизика Джорджа Эллери Хейла) – действительно потрясающий инструмент. Он был введен в эксплуатацию в 1948 г. и оставался самым большим в мире телескопом более 25 лет. В начале 1970-х гг., когда я, подросток, делал первые шаги в качестве астронома-любителя, телескоп Хейла был тем же, чем для более молодого поколения стал космический телескоп «Хаббл». Когда рассматриваешь этот великолепный инструмент, чувствуешь благоговейный трепет.

От большого купола до намного меньшего телескопа Самуэля Ошина – короткая поездка на машине. Диаметр его главного зеркала всего 1,2 м. Называемый также «Паломарский Шмидт» (за оптическую конструкцию), он имеет громадное поле зрения, более чем в 12 раз превышающее поперечник полной Луны. В 1950-х гг. телескоп использовался в знаменитом исследовании звездного неба Паломарской обсерватории – составлении громадного атласа фотографий неба Северного полушария.

Сегодня такие астрономы Паломарской обсерватории, как Эдвин Хаббл (в честь которого был назван космический телескоп) не узнали бы инструмент. Наверху телескопа установлен гигантский, размером в теннисный стол, затвор. Трубу телескопа вскрыли, чтобы разместить большую ПЗС-камеру, охлаждаемую до сверхнизких температур, и дополнительное оптическое оборудование. Повсюду кабели и электроника. Более того, инструмент стал полностью автоматическим – никто не дежурит ночами, пока телескоп обследует небо. Познакомьтесь с проектом Zwicky Transient Facility, ZTF – одним из самых быстрых построителей карты звездного неба в мире![114]

Перейти на страницу:

Все книги серии Библиотека фонда «Траектория»

Братья Райт. Люди, которые научили мир летать
Братья Райт. Люди, которые научили мир летать

В начале XX века человечество охватила «летная лихорадка» – страстное стремление воплотить, наконец, в жизнь многовековую мечту об управляемом полете. Правительства США и стран Европы тратили огромные суммы на программы по созданию первого летательного аппарата с мотором. А в это время в небольшом американском городке в штате Огайо два сына местного епископа на собственные небольшие средства строили свою летающую машину. История о том, как скромные владельцы велосипедной мастерской, не окончившие даже колледжа, сконструировали и испытали первый в мире управляемый самолет, рассказанная лауреатом Пулитцеровской премии, обладателем Национальной книжной премии США Дэвидом Маккаллоу.Орвилл и Уилбур Райт заинтересовались полетами после знакомства с детской французской игрушкой, похожей на «вертолет» с двумя пропеллерами и резиновой лентой. Любопытство, пытливость ума, чтение книг и страсть к полетам помогли братьям Райт сконструировать первый управляемый самолет.Из книги, полной биографических и исторических подробностей, читатель узнает, как братья Райт наблюдали за птицами и почему этот опыт оказался необходимым при испытании первых планеров в неприметном Китти Хок на Внешних отмелях, как неудачи только подтолкнули к окончательной решимости летать и как четыре полета на «Флайере» в декабре 1903 года изменили ход истории человечества.

Дэвид Маккаллоу

Публицистика
Происхождение всего: От Большого взрыва до человеческой цивилизации
Происхождение всего: От Большого взрыва до человеческой цивилизации

Невероятно компактный рассказ геофизика Дэвида Берковичи о том, как все везде появилось: звезды и галактики, атмосфера Земли, океаны, клетка и, наконец, человеческие цивилизации, написан трепетно и талантливо. Сочетая юмор и безупречную научную канву, Берковичи с головокружительной скоростью проводит нас сквозь пространство и время – почти 14 млрд лет, показывая при этом связи между теориями, помогающие понимать такие темы, как физика частиц, тектоника плит и фотосинтез. Уникальный эксперимент Берковичи в равной мере впечатляет научной убедительностью и литературным мастерством и станет незабываемым опытом знакомства с вопросами космологии, геологии, климатологии, человеческой эволюции как для искушенного читателя, так и для новичка.

Дэвид Берковичи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука

Похожие книги