Читаем Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии полностью

А волны Эйнштейна в трехмерном пространстве? Незачем напрягать воображение, представляя возмущение гипотетического четвертого измерения. Это всего лишь волнообразное изменение «плотности пространства». Мысленно рисуем трехмерную миллиметровку, состоящую из кубиков, и наблюдаем, как их стороны удлиняются и укорачиваются перпендикулярно направлению волны по мере ее прохождения.

Волны в трехмерном пространстве являются, разумеется, трехмерными. Популярные схемы и фильмы, изображающие их в двух измерениях, создают ложное впечатление, что две вращающиеся по орбите ЧД испускают гравитационные волны только в горизонтальной плоскости. В действительности волны распространяются во всех направлениях. В одном направлении они могут быть сильнее, чем в другом, но избегайте видеть их только в плоскости орбиты.

Итак, вот правильная визуализация волн Эйнштейна. В сущности, картина почти не отличается от волн плотности, распространяющихся по сосуду с желе, если его встряхнуть, где желе представляет безвоздушное пространство.

В зависимости от источника гравитационные волны могут сильно различаться частотами и амплитудами. (Если вы забыли, что такое частота, длина, амплитуда и скорость волны, вернитесь к главе 2.) Представьте две ЧД, взаимно обращающиеся очень близко друг к другу. Допустим, они совершают 100 оборотов в секунду (эта величина близка к реальности). Из теории Эйнштейна следует, что они излучают гравитационные волны с частотой 200 Гц – мимо наблюдателя, находящегося на некотором расстоянии, за каждую секунду проходит 200 «гребней волны». Поскольку гравитационные волны движутся со скоростью света (300 000 км/с), соответствующая длина волны составляет 1500 км.

Что касается амплитуды, то в случае гравитационной волны это мера интенсивности, показывающая, насколько растягивается и сжимается пространственно-временной континуум. В этом отношении важно понять две вещи. Во-первых, амплитуда уменьшается с расстоянием. Вблизи орбиты ЧД возмущение пространственно-временного континуума сильнее, чем вдали от нее. Фактически амплитуда обратно пропорциональна расстоянию. Проще говоря, волны, уйдя в 5 раз дальше, становятся в 5 раз слабее.

(Это может показаться странным. Ведь сила гравитации или яркость источника света уменьшается пропорционально квадрату расстояния. Если разнести две планеты в 5 раз дальше, их взаимное притяжение уменьшится в 25 раз. Увеличьте расстояние до звезды в 10 раз, и она станет в 100 раз бледнее. Однако в этих случаях мы рассматриваем энергию гравитационного поля или световой волны. В отношении волн Эйнштейна речь идет об амплитуде, действительно обратно пропорциональной расстоянию.)

Кроме того, нужно понять, что амплитуда гравитационных волн непостижимо мала. Я сравнил безвоздушное пространство с сосудом с желе. Но лучше было бы сравнить его с бетонным блоком. Если слегка качнуть банку с желе, все оно начнет колыхаться. Даже ударив по бетонному блоку кувалдой, вы едва ли заметите распространяющуюся в массиве бетона волну. Дело в том, что бетон гораздо плотнее желе. Пространственно-временной континуум обладает исключительной жесткостью. Его трудно деформировать, изогнуть, растянуть или сжать. Нужно очень много энергии, чтобы вызвать даже самое слабое возмущение.

Итак, вот характеристики сигнала гравитационной волны двух взаимно обращающихся ЧД. Скорость равна скорости света, частота 200 Гц, соответствующая длина волны 1500 км, амплитуда обратно пропорциональна расстоянию между наблюдателем и парой ЧД, но в любом случае чрезвычайно мала.

Что изменится в случае намного более массивных ЧД? Если бы они также совершали по орбите 100 оборотов в секунду, то частота (и, конечно, длина) волны была бы точно такой же, но амплитуда увеличилась бы благодаря большим массам.

Однако амплитуда зависит еще и от ускорения движения ЧД по орбите. Если сильнее их сблизить, так, что они начнут вращаться быстрее, амплитуда еще больше возрастет. Увеличится и частота: при меньшем расстоянии между ними ЧД будут иметь меньший период обращения. Таким образом, если ЧД сближаются по спирали, как амплитуда, так и частота сигнала гравитационной волны нарастают. Именно это обнаружили детекторы LIGO в сентябре 2015 г., когда впервые зарегистрировали волны Эйнштейна.

Я мог бы еще о многом рассказать, но приберегу это для следующих глав. Пора вернуться к более увлекательным историям – в данном случае о том, как двое ученых едва не подрались в полном конференц-зале.

_________

Джозеф Вебер знал о драках все. Во Вторую мировую войну он был капитан-лейтенантом ВМС США и в мае 1942 г. чудом не утонул на «Лексингтоне», превращенном японцами в месиво горящей стали. Джо готовился праздновать 33-летие – он родился за 12 дней до момента, когда Артур Эддингтон вглядывался в облака над островом Принсипи.

Перейти на страницу:

Все книги серии Библиотека фонда «Траектория»

Братья Райт. Люди, которые научили мир летать
Братья Райт. Люди, которые научили мир летать

В начале XX века человечество охватила «летная лихорадка» – страстное стремление воплотить, наконец, в жизнь многовековую мечту об управляемом полете. Правительства США и стран Европы тратили огромные суммы на программы по созданию первого летательного аппарата с мотором. А в это время в небольшом американском городке в штате Огайо два сына местного епископа на собственные небольшие средства строили свою летающую машину. История о том, как скромные владельцы велосипедной мастерской, не окончившие даже колледжа, сконструировали и испытали первый в мире управляемый самолет, рассказанная лауреатом Пулитцеровской премии, обладателем Национальной книжной премии США Дэвидом Маккаллоу.Орвилл и Уилбур Райт заинтересовались полетами после знакомства с детской французской игрушкой, похожей на «вертолет» с двумя пропеллерами и резиновой лентой. Любопытство, пытливость ума, чтение книг и страсть к полетам помогли братьям Райт сконструировать первый управляемый самолет.Из книги, полной биографических и исторических подробностей, читатель узнает, как братья Райт наблюдали за птицами и почему этот опыт оказался необходимым при испытании первых планеров в неприметном Китти Хок на Внешних отмелях, как неудачи только подтолкнули к окончательной решимости летать и как четыре полета на «Флайере» в декабре 1903 года изменили ход истории человечества.

Дэвид Маккаллоу

Публицистика
Происхождение всего: От Большого взрыва до человеческой цивилизации
Происхождение всего: От Большого взрыва до человеческой цивилизации

Невероятно компактный рассказ геофизика Дэвида Берковичи о том, как все везде появилось: звезды и галактики, атмосфера Земли, океаны, клетка и, наконец, человеческие цивилизации, написан трепетно и талантливо. Сочетая юмор и безупречную научную канву, Берковичи с головокружительной скоростью проводит нас сквозь пространство и время – почти 14 млрд лет, показывая при этом связи между теориями, помогающие понимать такие темы, как физика частиц, тектоника плит и фотосинтез. Уникальный эксперимент Берковичи в равной мере впечатляет научной убедительностью и литературным мастерством и станет незабываемым опытом знакомства с вопросами космологии, геологии, климатологии, человеческой эволюции как для искушенного читателя, так и для новичка.

Дэвид Берковичи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука

Похожие книги