Читаем Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии полностью

Каждая из двух алюминиевых антенн имела длину 1,5 м, диаметр около 65 см и вес 1400 кг. Их собственная частота составляла 1660 Гц – разумный выбор, если пытаться обнаружить волны Эйнштейна, вызванные столкновением нейтронных звезд. (Мы поговорим о нейтронных звездах в главе 5.) Оставалось дождаться одновременной регистрации двух сигналов – так называемого совпадения.

Веберу не пришлось долго ждать. С 30 декабря 1968 г. по 21 марта 1969 г. было зафиксировано не менее 17 совпадений. Очевидно, это не могло быть случайностью. В начале июня он впервые сообщил о результатах на конференции по релятивизму в Цинциннати (штат Огайо) и удостоился оваций. Вскоре после этого, 16 июня, в Physical Review Letters была опубликована его статья «Доказательство открытия гравитационного излучения» («гравитационное излучение» – ныне вышедший из употребления синоним понятия гравитационных волн).



Вскоре восторг сменился сомнениями. Во-первых, астрофизиков смущало количество событий. С учетом чувствительности антенн Вебера волны, вызванные столкновением нейтронных звезд, должны были возникать в пределах нескольких сотен св. лет от Земли. В такой маленькой области пространства 17 столкновений за три месяца были совершенно невозможны. Если же волны пришли от гораздо более дальнего источника, например какого-то неизвестного энергетического процесса в центре Млечного Пути, то задействованные энергии оказывались невероятно большими.

Экспериментаторы также прониклись скепсисом. Чтобы результаты эксперимента были признаны научным сообществом, они должны быть воспроизводимыми. Но Владимир Брагинский из МГУ не смог получить результаты Вебера. Энтони Тайсон из Bell Telephone Laboratories в Холмделе, штат Нью-Джерси, ничего не обнаружил. Результат Дэвида Дугласа в Рочестерском университете оказался отрицательным. Рон Древер из Глазго трудился впустую. Вебер же продолжал сообщать о новых удачах своей «гравитационно-волновой лаборатории» в Мэриленде.

Тони Тайсон до сих пор помнит споры с Элом Клогстоном, возглавлявшим лабораторию физических исследований в лабораториях Bell. Когда Тайсон рассказал ему о планах поставить эксперимент для проверки результатов Вебера, Клогстон энтузиазма не выказал главным образом потому, что не увидел никакой выгоды для Тайсона и лаборатории[29]. Если окажется, что Вебер ошибается, это им ничего не даст, если же Вебер окажется прав, то именно он, а не Тайсон получит «нобелевку». Так ради чего стараться? Тем не менее Тайсон начал, без особой огласки, строить очень чувствительные резонансные детекторы. Он объединился с Дэйвом Дугласом, и в 1971 г. они даже начали сотрудничать с Вебером, сравнивая показания приборов в Холмделе и в Рочестере, обмениваясь данными с Мэрилендом, повышая чувствительность оборудования и разрабатывая более совершенное программное обеспечение для анализа результатов.

Скоро Тайсон утвердился во мнении, что Вебер видит то, чего нет. Вебер был блестящим мыслителем и умным инженером, но небрежно подходил к анализу данных и статистике. Он никогда не публиковал алгоритмы, по которым определял и идентифицировал совпадения показаний разных антенн. Если постоянно менять используемые критерии, то обязательно найдешь столько «совпадений», сколько захочешь.

Вебер совершал и глупые ошибки. Он заявил, что получил сигналы из центра Млечного Пути, поскольку они обнаруживались преимущественно, когда центр нашей галактики стоял высоко в небе, а волны Эйнштейна давали бы более сильные сигналы в антеннах при движении в вертикальном, чем в горизонтальном направлении. Это верно, но Тайсону пришлось напомнить ему, что Земля проницаема для гравитационных волн. Вследствие этого сигналы должны иметь такую же силу, когда Млечный Путь достигает предельного положения ниже горизонта, но Вебер о таких сигналах не сообщал.

Затем Вебер утверждал, что обнаружил совпадения собственных измерений с данными из Холмдела и Рочестера – сигналы, правда, едва выделяющиеся из шума, но возникавшие точно в одно и то же время. Но Тайсон и Дуглас впоследствии обнаружили, что Вебер использовал восточное летнее время, тогда как они работали по общемировому, отличающемуся на 4 часа. Какой конфуз!

Для Джо Вебера это был сложный период. Он целыми днями в одиночестве работал в лаборатории и постоянно сталкивался с критикой своих трудов. Летом 1971 г. умерла от сердечного приступа его жена. Но Вебер был упрям и сдаваться не собирался. В марте 1972 г. 52-летний ученый женился на 28-летней Вирджинии Тримбл, астрономе из Калифорнии, и начал брать уроки танцев.

Перейти на страницу:

Все книги серии Библиотека фонда «Траектория»

Братья Райт. Люди, которые научили мир летать
Братья Райт. Люди, которые научили мир летать

В начале XX века человечество охватила «летная лихорадка» – страстное стремление воплотить, наконец, в жизнь многовековую мечту об управляемом полете. Правительства США и стран Европы тратили огромные суммы на программы по созданию первого летательного аппарата с мотором. А в это время в небольшом американском городке в штате Огайо два сына местного епископа на собственные небольшие средства строили свою летающую машину. История о том, как скромные владельцы велосипедной мастерской, не окончившие даже колледжа, сконструировали и испытали первый в мире управляемый самолет, рассказанная лауреатом Пулитцеровской премии, обладателем Национальной книжной премии США Дэвидом Маккаллоу.Орвилл и Уилбур Райт заинтересовались полетами после знакомства с детской французской игрушкой, похожей на «вертолет» с двумя пропеллерами и резиновой лентой. Любопытство, пытливость ума, чтение книг и страсть к полетам помогли братьям Райт сконструировать первый управляемый самолет.Из книги, полной биографических и исторических подробностей, читатель узнает, как братья Райт наблюдали за птицами и почему этот опыт оказался необходимым при испытании первых планеров в неприметном Китти Хок на Внешних отмелях, как неудачи только подтолкнули к окончательной решимости летать и как четыре полета на «Флайере» в декабре 1903 года изменили ход истории человечества.

Дэвид Маккаллоу

Публицистика
Происхождение всего: От Большого взрыва до человеческой цивилизации
Происхождение всего: От Большого взрыва до человеческой цивилизации

Невероятно компактный рассказ геофизика Дэвида Берковичи о том, как все везде появилось: звезды и галактики, атмосфера Земли, океаны, клетка и, наконец, человеческие цивилизации, написан трепетно и талантливо. Сочетая юмор и безупречную научную канву, Берковичи с головокружительной скоростью проводит нас сквозь пространство и время – почти 14 млрд лет, показывая при этом связи между теориями, помогающие понимать такие темы, как физика частиц, тектоника плит и фотосинтез. Уникальный эксперимент Берковичи в равной мере впечатляет научной убедительностью и литературным мастерством и станет незабываемым опытом знакомства с вопросами космологии, геологии, климатологии, человеческой эволюции как для искушенного читателя, так и для новичка.

Дэвид Берковичи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука

Похожие книги