Для этого используется хитроумный механизм обратной связи. Пока путь света в обе стороны между зеркалами остается равным целому числу длин волны, фотодетектор в темном порте интерферометра ничего не регистрирует. Но если длина плеча меняется из-за какой-либо внешней вибрации, некоторое количество света попадает в детектор. Как только это происходит, на контроллер концевого зеркала в плече подается сигнал. Электрический ток течет через катушку, создавая магнитное поле. Маленькие магниты на ободе концевого зеркала подвергаются действию силы притяжения или отталкивания. Кроме магнитов, в LIGO стоят электростатические толкатели, использующие ту же силу, которая притягивает полоски бумаги к расческе с электростатическим зарядом. Благодаря этому зеркало можно немного двигать назад и вперед – достаточно, чтобы восстановить запирание плеча.
Проходящая гравитационная волна также нарушит первоначальную интерференционную структуру в силу возникающих отклонений времени прихода света. Фотодетектор начнет регистрировать свет. Сработает механизм обратной связи, изменив текущий через катушку электрический ток и силу магнитного поля. В результате зеркала сдвинутся так, чтобы восстановить идеальную ослабляющую интерференцию в темном порте.
Если вы будете постоянно считывать изменения электрического тока, проходящего через катушку, то получите отчетливую картину крохотных вынужденных движений зеркала. Большинство этих восстанавливающих запирание плеча движений обусловливаются внешними вибрациями («шумом»), но некоторые могут быть вызваны искомыми волнами Эйнштейна.
Временно задерживая свет лазера в интерферометре при помощи двух зеркал, получаем дополнительное преимущество – накопление энергии в двух плечах. Благодаря этому свет в резонаторе Фабри – Перо представляет собой намного более мощный и равномерный поток фотонов, чем свет, минующий резонатор. Это важно, если требуется измерить чрезвычайно малые изменения выходного сигнала, как в нашем случае.
Чтобы понять, почему чем больше фотонов, тем точнее измерения, представьте, что хотите с точностью определить, насколько сильный ливень идет в Луизиане во время летней грозы. Вы находитесь в хижине с железной крышей, и все, что у вас есть, – это старомодный измеритель интенсивности шума, в котором игла двигается по дуге. Вы решаете использовать звук капель, барабанящих по крыше, в качестве показателя силы дождя. При слабом дожде вы услышите «кап… кап-кап… кап». Будет очень трудно определить, насколько шумным является дождь, и игла шумомера бешено мечется туда-сюда. Этот эффект называется дробовым шумом. Но вот гроза усиливается, дождь становится проливным. Игла движется по шкале и останавливается на определенном значении, которое может быть считано с высокой точностью. Вот почему нам нужно много света – большое количество фотонных «дождевых капель», чтобы знать, насколько именно меняется уровень освещенности при смещении зеркал.
Итак, мы создали практически идеальный интерферометр. Он имеет виртуальные плечи почти в 1200 км длиной, позволяющие регистрировать чрезвычайно малые изменения времени перемещения света. В случае этих изменений темный порт перестает быть совершенно темным. Какое-то количество света попадает на фотодетектор. Накачивая мощность лазера в двух плечах интерферометра, мы в значительной мере устранили дробовой шум. Теперь даже ничтожные изменения количества света из-за прохождения волны Эйнштейна выделяются на фоне остаточного шума.
Разумеется, поиск гравитационных волн осложняют многие другие проблемы.
Среди них с большим отрывом лидируют: захлопнувшаяся дверь или проехавший грузовик, шаги людей поблизости, промышленная деятельность в соседнем городе, крохотные изменения температуры, отдаленная гроза, влияющая на молекулы воздуха, лесозаготовки вблизи обсерватории (в случае LIGO в Ливингстоне), удары тихоокеанских волн о берег на юге штата Вашингтон (в случае LIGO в Хэнфорде), микросейсмическая активность – список можно продолжить. Зеркала требуют максимально возможной изоляции от этого «сейсмического шума», который не позволит выделить крайне слабый эффект проходящей гравитационной волны.
Огромные усилия были затрачены на разработку хитроумных систем подвеса зеркал. Чтобы изолировать зеркала от внешних колебаний, были применены практически все известные приемы. Вибрационные датчики подают входной сигнал на самонастраивающиеся системы демпфирования, противодействующие колебаниям почвы, – примерно так же устроены микрофоны с шумоподавлением. Дальнейшую изоляцию обеспечивают сложные системы свободно свисающих плоских пружин и амортизаторов. Самым эффективным средством защиты является маятниковый механизм.