Демпфирующую способность маятника продемонстрирует очень простой эксперимент. Возьмите тонкую веревку или леску около метра длиной. Привяжите к ручке тяжелой кофейной чашки. Поднимите веревку за свободный конец, чтобы чашка повисла неподвижно. Если медленно повести конец веревки влево или вправо, чашка неохотно последует за движением, если же перемещать конец веревки быстро, чашка вообще едва шелохнется. Система работает еще лучше, если другой веревкой привязать под первой чашкой вторую: быстрые перемещения верхнего конца подвеса не оказывают видимого влияния на нижнюю чашку. Аналогично подвешенное зеркало удается изолировать от высокочастотных вибраций в окружающем пространстве. В LIGO применяется четырехэтапная система подвеса. Достоинство первое: зеркала являются толстыми и тяжелыми – 34 см в диаметре, толщиной 20 см и весом около 40 кг. Достоинство второе: они висят на проволоке минимально возможной толщины (0,4 мм) из плавленого кварца – особого стекла, отличающегося огромной прочностью. Достоинство третье: зеркала имеют чрезвычайно высокий уровень чистоты и простоты – зеркала LIGO представляют собой тщательно отполированные цилиндры из аморфного кварца.
Очевидно, избавиться от
Незачем говорить, что лазер, светоделитель и фотодетектор также должны быть максимально изолированы от внешних вибраций. Более того, все чувствительные части интерферометра заключены в гигантские вакуумные резервуары. Даже из 4-километровых плеч – стальных труб, внутри которых переотражаются пучки лазерного излучения, – откачан весь воздух. Недопустимо, чтобы зеркала дрожали вследствие бомбардировки молекулами воздуха. Нельзя также допустить рассеяния лазерного излучения молекулами воздуха и крохотными частицами пыли. Система глубокого вакуума LIGO объемом около 9000 куб. м является одной из крупнейших в мире.
Еще одна потенциальная проблема – это лучевое давление, оказываемое пучками света лазеров на зеркала. Есть также «тепловой шум» – крайне слабые движения молекул в отражающем покрытии зеркал при нормальной температуре окружающей среды. Разумеется, слабо изогнутая поверхность зеркал должна быть отполирована максимально чисто, поскольку малейшие неровности уничтожат когерентность лазерного излучения.
Список потенциальных источников шума далеко не полон, я лишь пробежался по верхам. Все эти эффекты грозят помешать регистрации гравитационных волн, но все и каждую из проблем ученые и инженеры смогли решить или обойти.
Дополнительные подсистемы интерферометра еще больше увеличивают чувствительность. Например, лазерный «чистильщик» (официальное название – фильтр входного сигнала) гарантирует максимально возможную чистоту и стабильность света лазера. Волны, входящие в туннели, должны иметь
Еще один обязательный элемент – зеркало рециркуляции мощности. Полагаю, вы помните, что происходит, когда пучки лазерного излучения, возвращающиеся из двух плеч L-образной конструкции, снова встречаются на светоделителе: они нейтрализуют друг друга в одном направлении (к темному порту) и взаимно усиливаются в другом (в направлении лазера). Таким образом, во время эксплуатации в штатном режиме довольно много лазерного излучения возвращается туда, где возникло. Не использовать эту мощность лазерной установки означало бы транжирить ресурсы. Зеркало рециркуляции мощности отправляет свет обратно в интерферометр. В результате еще больше фотонов носятся взад-вперед по туннелям, а чем выше мощность лазерного излучения, тем выше точность измерений.