Читаем Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии полностью

Тем временем в нескольких сотнях километров к юго-востоку, в университете Мэриленда, Джо Вебер экспериментировал с резонаторными детекторами (вы читали об этом в главе 4). Узнав об этом, студенты Вайсса заинтересовались и задали ему вопрос о регистрации гравитационных волн. Снова темный лес! Однако он нашел изящный способ объяснить им идею при помощи трех далеко разнесенных в пространстве, не испытывающих ускорения «контрольных грузов» и точных часов – о часах он знал все. «Не думайте об измерении изменений расстояния, – сказал он студентам. – Представьте, что меряете изменение времени перемещения света. Вы уже должны понимать, о чем идет речь».

Вайсс не знал, что идея не нова. Два русских исследователя, Михаил Герценштейн и Владислав Пустовойт, опубликовали сходные мысли на несколько лет раньше. Однако статья вышла в советском журнале, о котором в США, вероятно, и не слышали. В те годы одним из немногих американских физиков, поддерживающих тесный контакт с советскими коллегами, был теоретик Кип Торн из Калифорнийского технологического института в Пасадене. В разгар холодной войны Торн регулярно ездил в МГУ для совместной работы с группой прецизионных измерений под руководством Владимира Брагинского, благодаря чему и узнал о публикациях.

Как бы то ни было, Вайсс сформулировал базовые принципы гравитационно-волнового интерферометра в эпохальной статье, вышедшей в 1972 г. в Quarterly Progress Report в MIT[46]. Почти 45 лет спустя ученые, в том числе Торн, высоко ее ценят. В ней описано большинство основных элементов конструкции, детально рассмотрены многие источники шума, с которыми придется столкнуться экспериментаторам, и, главное, возможные пути решения этих проблем. Эта статья очень помогла ученым, уже работавшим над первыми маленькими прототипами интерферометров.

Почему Вайсс сам не построил прототип детектора по рецепту, написанному им в 1972 г.? В действительности построил, но из-за отсутствия денег работа затянулась. Изначально физический факультет MIT получал основное финансирование от министерства обороны. После Второй мировой войны военные нуждались во всех перспективных блестящих ученых и инженерах, которых только могли привлечь. «Не важно, чем они занимаются, просто обеспечьте поток выпускников» – таков был принцип. В начале 1970-х гг., во время безумной, по словам Вайсса, войны во Вьетнаме, эта ситуация стала неудобной для многих людей с левыми взглядами. Они считали, что военные не должны иметь никакого влияния на развитие науки. Новые законы гарантировали, что в будущем министерство обороны сможет поддерживать только научную деятельность, связанную с вопросами национальной безопасности. Космология и гравитация были не сказать чтобы связаны с национальной безопасностью, поэтому Вайсс лишился финансирования от военных, а у MIT было мало как средств, чтобы компенсировать эту потерю, так и заинтересованности. Вскоре администрация института решила распустить его группу. Работа Вайсса над космической миссией по изучению реликтового излучения по-прежнему оплачивалась НАСА, но на программе исследования гравитационных волн был в одночасье поставлен крест (результатом космической миссии стал спутник COBE – Cosmic Background Explorer)[47]. Вайссу пришлось обратиться за грантом в Национальный научный фонд (NSF).

В те годы NSF продолжал финансировать эксперименты Джо Вебера с резонансными антеннами. И вот новый интерферометрический метод. Действительно ли он является более плодотворным? В 1974 г. NSF разослал заявку Вайсса на грант различным исследовательским группам для независимой оценки. «Мои идеи обошли весь мир, прежде чем я получил хоть какие-то деньги», – говорит Вайсс. Лишь в конце 1970-х гг. NSF наконец профинансировал строительство его собственного маленького интерферометра-прототипа.

Более ранним прототипом, вдохновленным идеями Вайсса, являлся трехметровый интерферометр в немецком Мюнхене. Его построила группа по изучению гравитационных волн под руководством пионера компьютерной техники физика Хайнца Биллинга из Института астрофизики им. Макса Планка. Биллинг уже строил чувствительные детекторы для проверки идей Джо Вебера и, как и все остальные, ничего не обнаружил. Однако из этого, разумеется, еще не следовало, что волн Эйнштейна не существует. Интерферометрический метод, о котором Биллинг узнал, рецензируя заявку Вайсса на грант от NSF, мог оказаться более перспективным путем к их регистрации. Почему бы не попытаться? Еще одним ранним прототипом стал двухметровый настольный экспериментальный прибор исследовательских лабораторий Хьюза в калифорнийском Малибу. Это было творение бывшего постдока Джо Вебера Боба Форварда.

Перейти на страницу:

Все книги серии Библиотека фонда «Траектория»

Братья Райт. Люди, которые научили мир летать
Братья Райт. Люди, которые научили мир летать

В начале XX века человечество охватила «летная лихорадка» – страстное стремление воплотить, наконец, в жизнь многовековую мечту об управляемом полете. Правительства США и стран Европы тратили огромные суммы на программы по созданию первого летательного аппарата с мотором. А в это время в небольшом американском городке в штате Огайо два сына местного епископа на собственные небольшие средства строили свою летающую машину. История о том, как скромные владельцы велосипедной мастерской, не окончившие даже колледжа, сконструировали и испытали первый в мире управляемый самолет, рассказанная лауреатом Пулитцеровской премии, обладателем Национальной книжной премии США Дэвидом Маккаллоу.Орвилл и Уилбур Райт заинтересовались полетами после знакомства с детской французской игрушкой, похожей на «вертолет» с двумя пропеллерами и резиновой лентой. Любопытство, пытливость ума, чтение книг и страсть к полетам помогли братьям Райт сконструировать первый управляемый самолет.Из книги, полной биографических и исторических подробностей, читатель узнает, как братья Райт наблюдали за птицами и почему этот опыт оказался необходимым при испытании первых планеров в неприметном Китти Хок на Внешних отмелях, как неудачи только подтолкнули к окончательной решимости летать и как четыре полета на «Флайере» в декабре 1903 года изменили ход истории человечества.

Дэвид Маккаллоу

Публицистика
Происхождение всего: От Большого взрыва до человеческой цивилизации
Происхождение всего: От Большого взрыва до человеческой цивилизации

Невероятно компактный рассказ геофизика Дэвида Берковичи о том, как все везде появилось: звезды и галактики, атмосфера Земли, океаны, клетка и, наконец, человеческие цивилизации, написан трепетно и талантливо. Сочетая юмор и безупречную научную канву, Берковичи с головокружительной скоростью проводит нас сквозь пространство и время – почти 14 млрд лет, показывая при этом связи между теориями, помогающие понимать такие темы, как физика частиц, тектоника плит и фотосинтез. Уникальный эксперимент Берковичи в равной мере впечатляет научной убедительностью и литературным мастерством и станет незабываемым опытом знакомства с вопросами космологии, геологии, климатологии, человеческой эволюции как для искушенного читателя, так и для новичка.

Дэвид Берковичи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука

Похожие книги