Когда разность потенциалов между телом нейрона и окружающей средой достигает критической величины, запускается стремительный лавинообразный процесс. В мембране начинают открываться и закрываться ионные каналы, через которые ионы могут проходить с внутренней стороны мембраны на наружную и наоборот, смещая потенциалы и создавая электрический импульс, который распространяется и за пределы самого тела нейрона. Рождается потенциал действия – импульс, который, как по кабелю, стремительно пробегает по отростку-аксону, соединяющему нейроны (см. рис. 2.1).
Рисунок 2.1
. Основные части нейрона. Импульсы образуются в теле нейрона и распространяются по его отростку-аксону – «кабелю», соединенному через синаптические промежутки с дендритами соседних нейронов, древообразными структурами отростков, которые принимают импульсы-сообщения от аксонов.Процесс возникновения каналов в мембране всегда протекает одинаково, поэтому электрический импульс всегда получается одинаковой продолжительности и амплитуды. Либо импульс есть, либо его нет, никаких компромиссов.
Путь к пониманию универсальной природы нервных импульсов начался с исследований легко доступных нервных окончаний у неприхотливых лабораторных животных: седалищного нерва лягушки, глаза мечехвоста и глаза угря [19]
. Импульсы, регистрировавшиеся в этих экспериментах, каждый раз оказывались одной и той же формы. Однако потребовалось более двух десятилетий кропотливой работы, чтобы, начав с анализа этих первых записей, сделанных в первой половине 1930-х годов, и ставя эксперименты на других животных, найти ответ на вопрос, почему так происходит. Кульминацией стала модель, разработанная Аланом Ллойдом Ходжкином и Эндрю Хаксли в 1952 году, в которой они собрали все доступные данные [20].Ходжкин и Хаксли работали с гигантским аксоном кальмара (речь, конечно, об аксоне, который является гигантским у обычного кальмара, а не об аксоне гигантского кальмара, обитающего в глубинах океана, – разместить такого левиафана в обычной лаборатории было бы довольно непросто). Его огромный по клеточным меркам диаметр [21]
стал настоящим подарком для ученых, которым удалось ввести электрод прямо внутрь аксона и напрямую зарегистрировать импульс, перемещающийся по нему. А еще экспериментаторы научились выдавливать из аксона цитоплазму и заменять ее на солевые растворы разного состава. Их идея заключалась в том, чтобы затем поиграть с ионами в жидкости, в которой находился нейрон, увеличивая или уменьшая концентрацию определенных типов ионов, чтобы выяснить, какие именно ионные токи участвуют в проведении нервного импульса.Дело в том, что живые нейроны находятся в соленой среде – за пределами мембраны, в межклеточной жидкости, много ионов натрия (с положительным зарядом, +) и ионов хлора (с отрицательным зарядом, —). Однако в покое внутри нейрона, в его цитоплазме, ионов натрия и хлора мало, но много ионов калия (тоже положительно заряженных, +). Поскольку концентрации заряженных ионов – особенно калия – различаются по обе стороны мембраны, это создает на ней электрический потенциал, называемый потенциалом покоя. Изменяя концентрации ионов в жидкости, окружающей нейрон, Ходжкин и Хаксли управляли величиной этого потенциала. И, что очень важно, смогли выяснить, какие типы ионов (натрия, калия или хлора) определяют каждую фазу формирования импульса.
Мучая аксон кальмара в ванночке с соленой водой, ученые открыли процесс рождения импульса (рис. 2.2). Когда потенциал на мембране нейрона превышает критическое значение, в ней лавинообразно открываются ионные каналы, через которые могут проходить только ионы натрия. Они устремляются внутрь клетки, быстро увеличивая там свою концентрацию и вызывая всплеск напряжения на мембране. Но это продолжается недолго, поскольку повышение концентрации ионов натрия вызывает открытие других каналов, пропускающих ионы калия, которые перекачиваются наружу, отправляя положительный заряд обратно почти так же быстро, как он поступает внутрь с ионами натрия. В свою очередь этот выброс калия закрывает каналы для натрия, поток ионов прекращается, и так же быстро, как оно росло, напряжение снова падает до отрицательных значений. Этот быстрый рост, а затем резкое падение напряжения и есть импульс.
Рисунок 2.2.
Импульс. Электрический потенциал (толстая черная линия) на мембране нейрона нарастает, пока не достигнет критической точки. Это запускает лавинообразное открытие каналов в мембране, ионы устремляются внутрь и затем наружу, потенциал быстро повышается, а затем так же стремительно снова падает вниз, прежде чем вернуться к нормальному состоянию. Весь процесс занимает около миллисекунды.