Являясь, возможно, наиболее странной реализацией идеи о параллельных мирах,
Для анализа этой весьма своеобразной возможности требуются глубокие и обширные знания — из общей теории относительности, теории чёрных дыр, термодинамики, квантовой механики, а также самые современные исследования по теории струн. Нитью, объединяющей эти несхожие области, является природа информации в квантовой вселенной.
Джон Уилер помимо способности находить и взращивать очень талантливых молодых учёных (помимо Хью Эверетта, его студентами были Ричард Фейнман, Кип Торн и, как мы вскоре увидим, Якоб Бекенштейн) обладал необъяснимой способностью ставить вопросы, изучение которых может изменить наши фундаментальные представления об устройстве природы. Однажды во время ланча в Принстоне в 1998 году я спросил его, что по его мнению будет доминантной темой в физике в последующие десятилетия. Он наклонил голову, как уже не раз делал в тот день, будто его стареющий скелет устал поддерживать такой могучий интеллект. Однако, теперь пауза затянулась, что заставило меня сомневаться, хочет ли он отвечать на мой вопрос или вообще забыл о нём. Но затем он медленно поднял свой взгляд на меня и промолвил одно единственное слово: «Информация».
Я не удивился. В течение некоторого времени он придерживался совершенно отличной точки зрения на физические законы по сравнению с тем, чему молодых физиков обучают в стандартных университетских курсах. Традиционно физика рассматривает
С этой точки зрения нашу вселенную можно рассматривать как информационный процессор. Он берёт информацию, касающуюся устройства вещей сейчас, и порождает информацию, характеризующую устройство вещей в следующем сейчас, и в последующем сейчас. Наши чувства улавливают этот процесс, замечая изменения окружающей среды во времени. Но окружающая среда сама является производной; она возникает из фундаментального ингредиента, информации, и развивается согласно фундаментальным правилам, законом природы.
Я не знаю, будет ли такая информационно-теоретическая установка доминировать в физике, как считал Уилер. Однако недавно, во многом благодаря работам физиков Герарда т’Хоофта и Леонарда Сасскинда, в сознании учёных произошёл сдвиг, вызванный изучением нетривиальных вопросов, касающихся поведения информации в одном особенном экзотическом контексте: в чёрных дырах.
Чёрные дыры
В течение года после публикации общей теории относительности немецкий астроном Карл Шварцшильд нашёл первое точное решение уравнений Эйнштейна, которое определяет форму пространства и времени в окрестности массивного сферического объекта, подобного звезде или планете. Замечательно не только то, что Шварцшильд нашёл своё решение, занимаясь вычислением траекторий артиллерийских снарядов на русском фронте во время Первой мировой войны, но также то, что он обыграл самого мастера игры — к тому моменту Эйнштейн нашёл лишь приближённые решения уравнений общей теории относительности. Эйнштейн был очень впечатлён и огласил достижения Шварцшильда, представив его работу перед Прусской академией наук; но даже он не смог увидеть то, что станет самым важным звеном наследия Шварцшильда.