Если не обращать внимания на истерику Феликса, данная ситуация подчёркивает простой, но существенный момент. Если что-то находится в большом беспорядке, как комната Оскара, то при большом количестве всяких разных перестановок содержащихся в нём составных частей общий вид остаётся прежним. Соберите двадцать шесть мятых рубашек, валяющихся на кровати, на полу, в гардеробе, и снова разбросайте их повсюду, разбросайте заново сорок две пустые банки из-под пива — и квартира всё равно будет выглядеть по-прежнему. Но когда что-то очень сильно упорядочено, как квартира Феликса, даже небольшая перемена становится заметной.
Это различие лежит в основе математического определения энтропии, данного Больцманом. Возьмите любую систему и подсчитайте число способов, которыми её компоненты могут быть переставлены, сохраняя при этом общий макроскопический вид.[50] Если есть большое число таких перестановок, то энтропия высока: система находится в сильном беспорядке. Если число таких перестановок мало, энтропия низкая: система высоко упорядочена (или, эквивалентно, имеет малый беспорядок).
В качестве более привычного примера рассмотрим контейнер с паром и куб изо льда. Будем рассматривать только их совокупные макроскопические свойства, которые можно наблюдать или измерять, не зная при этом детального состояния составляющих их молекул. Если опустить и вынуть руку из пара, то вы перемешаете между собой миллиарды молекул H2O, но при этом пар будет выглядеть столь же однородным, как и ранее. Но измените случайным образом положения и скорости многих молекул в куске льда, и результат вы увидите незамедлительно — кристаллическая структура льда будет разрушена. Появятся трещины и сколы. Пар, со случайно летающими по контейнеру молекулами H2O, обладает высокой степенью беспорядка; лёд, молекулы H2O которого расположены регулярным образом в кристаллической решётке, высоко упорядочен. Энтропия пара высока (много перестановок не приведут к изменению его вида); энтропия льда низкая (только небольшое количество перестановок не приведёт к изменению его вида).
Оценивая чувствительность макроскопического облика системы к её микроскопическому устройству, энтропия является естественным понятием в математическом формализме, который описывает совокупные физические свойства системы. Второй закон термодинамики развивает эту мысль количественным образом. Он устанавливает, что со временем полная энтропия системы будет возрастать.[51] Чтобы понять, почему так происходит, достаточно самых элементарных представлений о вероятности и статистике. По определению, конфигурация с высокой энтропией может реализоваться посредством большего числа микроскопических перестановок, чем конфигурация с меньшей энтропией. По мере эволюции системы она с огромной долей вероятности оказывается в состоянии с высокой энтропией, потому что, попросту говоря, таких состояний больше, чем остальных.
Эта идея универсальна. Бьющееся стекло, гаснущая свеча, расплывающиеся чернила, распространяющийся запах духов: это разные процессы, но их статистическое рассмотрение одинаково. В каждом из них порядок переходит в беспорядок, и это происходит потому, что есть масса способов создать беспорядок. Красота такого анализа — понимание этого вызвало моё самое восторженное «Вот это да!» в процессе моего физического образования — состоит в том, что не теряясь в микроскопических деталях, у нас есть ведущий принцип для объяснения, почему огромное количество явлений происходят так, а не иначе.