Любопытно, что Нозик отметил, что внутри его мультивселенной существует вселенная, состоящая из ничего. Абсолютного ничего. Не пустое пространство, а ничто, о котором вопрошал Готфрид Лейбниц в знаменитой фразе «Почему существует нечто, а не ничто?». Нозик не мог знать, что для меня это утверждение имело особый смысл. Когда мне было лет десять или одиннадцать, я наткнулся на фразу Лейбница и сильно озаботился этим вопросом. Я расхаживал по своей комнате, пытаясь ухватить, что значит ничто, часто заложив при этом одну руку за голову, думая, что попытка сделать невозможное — увидеть свою руку — поможет мне понять смысл полного отсутствия. Даже теперь, пытаясь представить абсолютное истинное ничто, небытие, я падаю духом. Полное ничто, с привычной нам позиции существующего нечто, есть самое полное отсутствие чего бы то ни было. И поскольку кажется, что ничто — это настолько проще, чем нечто — никаких законов в действии, никакой материи в игре, никакого пространства для заселения, никакого времени в течении — вопрос Лейбница попадает как раз в точку.
В окончательной мультивселенной
Теоретик, приученный говорить на языке математики, понимает всеобъемлющую мультивселенную Нозика как вселенную, где все возможные уравнения реализуются физически. Это такая версия рассказа Хорхе Луиса Борхеса «Вавилонская библиотека», в которой книги Вавилона написаны на языке математики и поэтому содержат все возможные осмысленные, непротиворечивые строчки из математических символов.[64] Некоторые из книг содержат известные нам формулы, такие как уравнения общей теории относительности и квантовой механики в приложении к известным в природе частицам. Однако, узнаваемые строки математических символов будут встречаться крайне редко. Большинство книг содержит уравнения, никем до сих пор не написанные, уравнения, которые в обычных условиях будут считаться чистой абстракцией. Идея окончательной мультивселенной в том, чтобы отказаться от этой привычной точки зрения. Больше не будет ситуации, когда большинство уравнений бездействуют, лёжа в спячке, и лишь несколько удачливых соотношений каким-то чудесным образом встроены в жизнь посредством физической реализации. Наоборот, каждая книга в библиотеке математического Вавилона
Предложение Нозика, если оформить его математически, даёт конкретный ответ на давно обсуждаемый вопрос. В течение столетий математики и философы задавались вопросом — математика изобретена или открыта? Витают ли математические понятия и законы где-то рядом, в ожидании отважного исследователя, который на них наткнётся? Или, поскольку этот исследователь скорее всего сидит за письменным столом, с карандашом в руках, быстро черкая заумные символы на бумаге, не являются ли полученные математические понятия и законы изобретением нашего разума в поиске порядка и системы?
На первый взгляд огромное количество математических достижений, нашедших своё применение в физических явлениях, убедительно свидетельствует в пользу того, что математика реальна. Примеров много. В широком диапазоне от общей теории относительности до квантовой механики физики обнаружили, что многочисленные математические открытия как будто по заказу изготовлены для физических приложений. Простой, но впечатляющий пример — это предсказание позитрона (античастицы электрона) Полем Дираком. В 1931 году при решении квантовых уравнений, описывающих движение электрона, Дирак обнаружил, что в математических выкладках возникает «постороннее» решение, которое описывает движение частицы, тождественной электрону, но с положительным электрическим зарядом (напомним, что у электрона заряд отрицательный). В 1932 году эта самая частица была обнаружена Карлом Андерсоном при тщательном изучении космических лучей, бомбардирующих Землю из космоса. То, что начиналось как манипуляции Дирака с математическими символами на бумаге, завершилось экспериментальным открытием первой частицы антиматерии в лаборатории.