Читаем Скрытая реальность. Параллельные миры и глубинные законы космоса полностью

Наоборот, окончательная мультивселенная не несёт никакой другой объяснительной нагрузки, помимо идеи о мультивселенной. Здесь преследуется только одна цель: выделить из нашего списка текущих дел задачу по поиску объяснения, почему наша вселенная привязана к такому набору математических законов, а не к другому. И совершается этот исключительный подвиг путём введения мультивселенной. Приготовленная специально для ответа на один-единственный вопрос, окончательная мультивселенная не имеет независимого смысла, присущего обсуждавшимся в предыдущих главах мультивселенным.

Такова моя точка зрения, и с ней можно не соглашаться. Есть философский взгляд на вещи (идущий от школы структурного реализма), согласно которому физики могут стать жертвой искусственного разделения между математикой и физикой. В теоретической физике принято считать, что математика является количественным языком описания физической реальности; я сам так делал почти на каждой странице этой книги. Но, возможно, говорит эта философская доктрина, математика — это нечто большее, чем просто описание реальности. Возможно, математика и есть реальность.

Это особенная идея. Мы не привыкли думать, что осязаемая реальность построена из эфемерной математики. Смоделированные вселенные из предыдущего раздела дают конкретный и поучительный способ думать об этом. Вспомним знаменитый исторический эпизод, когда во время философского разговора на природе епископа Беркли и Самюэля Джонсона последний пнул ногой придорожный камень, выразив тем самым свою спонтанную реакцию на утверждение Беркли, что материя — это плод воображения. Представьте, однако, что неведомо от д-ра Джонсона его пинок произошёл в гипотетической очень точной компьютерной симуляции. В этом смоделированном мире ощущение от пинка д-ра Джонсона будет таким же убедительным, как и в исторической версии. Но компьютерная симуляция — это не более чем цепочка математических манипуляций, которые берут состояние компьютерной памяти в один момент — сложную конфигурацию битов — и переводят эти биты, согласно установленным математическим правилам, в другие конфигурации.

Тогда если вы пристально изучите математические преобразования, выполняемые компьютером во время жеста д-ра Джонсона, вы увидите, прямо внутри самой математики, и пинок, и отскок ноги, а также мысль и знаменитую фразу «Вот как я это опровергаю!». Подключите компьютер к монитору (или к какому-нибудь футуристическому интерфейсу), и вы увидите, как математический танец битов изображает д-ра Джонсона и его пинок. Но не допускайте, чтобы смоделированные «бантики» — системный блок, прикольный интерфейс и так далее — затемнили важный факт: под капотом нет ничего кроме математики. Измените математические правила, и танцующие биты отчеканят другую реальность.

А почему бы не пойти дальше? Я поместил д-ра Джонсона внутрь симуляции только потому, что этот пример демонстрирует поучительную связь между математикой и реальностью д-ра Джонсона. Но более глубокий ответ в том, что компьютерная симуляция — это несущественный промежуточный шаг, всего лишь мысленный трамплин между опытом осязаемого мира и абстракцией математических уравнений. Математика сама по себе — посредством установленных ею отношений, образованных связей и вовлекаемых преобразований — содержит д-ра Джонсона, его движения и мысли. Вам не нужен компьютер. Вам не нужны танцующие биты. Д-р Джонсон сам находится внутри математики.{100}

Если вы принимаете идею, что математика сама может посредством своей внутренней структуры охватить все до одного аспекты реальности — интеллект, большие камни, решительные пинки, сбитые ноги — вы придёте к представлению о том, что наша реальность является ни чем иным как математикой. При таком взгляде на вещи всё, что вы осознаёте — ощущение от прикосновения к этой книге, ваши текущие мысли, планы на ужин — является проявлением математики. Реальность — это чувства, переживаемые математикой.

Разумеется, такая точка зрения требует концептуального прыжка, совершить который можно уговорить не каждого; что касается меня, то я на него не решусь. Но для тех, кто решится, математика в картине мира займёт место не просто «здесь вокруг», она станет единственным, что находится «здесь вокруг». Тело математики, будь то ньютоновские уравнения, или эйнштейновские, или любые другие уравнения, не становится реальным от того, что возникают физические сущности, в которых оно реализуется. Математика — вся целиком — уже реальна; она не требует реализации. Различные наборы математических уравнений — это различные вселенные. Таким образом, окончательная вселенная является побочным продуктом такой точки зрения на математику.

Перейти на страницу:

Похожие книги

Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука
«Безумные» идеи
«Безумные» идеи

Книга И. Радунской «"Безумные" идеи» утверждает доминирующую роль «безумных» идей. Не планомерное, постепенное развитие мысли, а скачки в познании, принципиально новые углы зрения — вот что так эффективно способствует прогрессу. Именно от «безумных» идей ученые ждут сегодня раскрытия самых загадочных тайн мироздания.О наиболее парадоксальных, дерзких идеях современной физики — в области элементарных частиц, физики сверхнизких температур и сверхвысоких давлений, квантовой оптики, астрофизики, теории относительности, квантовой электроники, космологии и о других аспектах современного естествознания — рассказывает книга «"Безумные" идеи».Книга «"Безумные" идеи» была переведена на венгерский, немецкий, французский, чешский, японский языки. В Японии за полтора года она была переиздана девять раз.

Ирина Львовна Радунская

Физика