Основное положение, из которого исходят систематики, состоит в том, что чем близкородственнее виды, тем более сходными вариантами одного и того же молекулярного текста они будут обладать. Это называется “принципом парсимонии”. Парсимония — то же самое, что и скаредная бережливость. Если у нас есть набор организмов, молекулярные “предложения” которых уже расшифрованы, например восемь животных, перечисленных в предыдущем абзаце, то наша задача выяснить, какая из возможных родословных, объединяющих эти организмы, наиболее экономична. Наиболее экономичным генеалогическим древом считается самое “скупое” на предположения, то есть допускающее минимальное количество эволюционных изменений и минимальный уровень конвергенции. Мы вправе считать конвергенцию минимальной исключительно из соображений вероятности. Крайне неправдоподобно, чтобы два неродственных животных могли случайно прийти к абсолютно одной и той же генетической последовательности — слово в слово, буква к букве, — особенно если предполагать, что значительная часть молекулярной эволюции нейтральна.
Однако при попытке рассмотреть все варианты родословной, какие только возможны, мы сталкиваемся с вычислительными трудностями. Когда нам надо классифицировать только три вида животных, возможных генеалогических деревьев всего-навсего три:
Хотя молекулярные систематики первыми стали придавать большое значение проблеме стремительно возрастающих огромных чисел, проблема эта в скрытом виде всегда присутствовала и в традиционной, немолекулярной таксономии. Просто обычные систематики избегали ее при помощи интуитивных догадок. Среди тех генеалогических деревьев, которые теоретически можно было бы рассмотреть, есть такие, которые есть смысл отбросить сразу же, — например, все те миллионы родословных, где люди будут ближе к дождевым червям, чем к шимпанзе. Систематики могут не тратить свое время на рассмотрение таких заведомо абсурдных генеалогических деревьев, а сосредоточиться вместо этого на тех относительно немногочисленных вариантах, которые не столь радикально расходятся с предварительными ожиданиями. Это, вероятно, правомерно, хотя всегда остается опасность того, что самая экономичная версия будет списана со счетов без рассмотрения. Компьютер тоже можно научить рационализировать расчеты, так что, к счастью, проблема больших чисел может оказаться не столь уж велика.
Молекулярная биология снабжает нас таким обилием информации, что мы можем систематизировать организмы снова и снова, каждый раз исходя из сравнения различных белков. Выводы, полученные в результате изучения одних молекул, могут быть использованы для проверки результатов, полученных на других молекулах. И если мы боимся, что в эволюционную историю, рассказанную какой-то одной белковой молекулой, закралась затемняющая истину конвергенция, нам будет нетрудно выяснить, так ли это, взглянув на другую молекулу. Конвергентная эволюция — это, в сущности, особая разновидность совпадения. А совпадение — оно на то и совпадение, чтобы случаться однажды с большей вероятностью, нежели дважды, а дважды — с большей вероятностью, чем трижды. Чем больше молекул белка мы сравниваем, тем ничтожнее возможность случайных совпадений.
Так, например, группа биологов из Новой Зеландии в одном своем исследовании взялась систематизировать 11 видов животных — причем не единожды, а пять раз независимо, с использованием пяти различных белков. Этими животными были овца, макак-резус, лошадь, кенгуру, крыса, кролик, собака, свинья, человек, корова и шимпанзе. Идея была в том, чтобы вначале составить родословную этих 11 видов по одному белку, а затем посмотреть, будет ли она