Карта Меркатора особенно облегчала решение штурманских задач. Угол, измеренный на ней между направлением меридиана и направлением на конечный пункт, точно соответствует курсу корабля. Корабль вели по компасу, а если углы между меридианом и направлением пути как на карте, так и на поверхности Земли совпадают, значит, штурман может быть уверен в правильности курса. Но будет ли по этому направлению проходить кратчайший путь?
Перед нами карта в проекции Меркатора (рис. 14).
Рис. 14.
Попытаемся нанести на нее кратчайший путь, например, из Гамбурга в Нью-Йорк. Соединим оба города прямой линией. На первый взгляд можно сказать, что по этой линии, которую называют локсодромией, и будет проходить кратчайший путь. Ведь это прямая линия, а что может быть короче прямого пути. Но это не так: на самом деле кратчайшее расстояние между Гамбургом и Нью-Йорком соответствует длине кривой линии, называемой ортодромией. На шаре это дуга большого круга, на эллипсоиде — более сложная кривая. Расстояние по локсодромии на поверхности земного шара всегда больше расстояния по ортодромии, за исключением направлений по меридиану и экватору, где локсодромия одновременно является и ортодромией. На рисунке показаны локсодромия и ортодромия, соединяющие Гамбург с Нью-Йорком. Как видите, кратчайшее расстояние между этими городами на карте в проекции Меркатора окажется кривой линией — ортодромией. В этом нетрудно убедиться, натянув на глобусе нить между заданными пунктами. Натянутая нить — бесспорный указатель кратчайшего пути. Именно по ортодромической трассе совершили в 1939 г. перелет Москва — Нью-Йорк Герой Советского Союза В. К. Коккинаки и штурман М. Гордиенко.
Впервые прокладку курса по кратчайшему пути разработал в 1731 г. русский ученый, крупнейший исследователь Сибири и Арктики С. Г. Малыгин. Он составил специальную карту, по которой можно нанести ортодромию. Пользуясь каргой Малыгина, корабль вели с помощью компаса кратчайшим путем, но в расчетный курс через определенные интервалы вводили поправки. Малыгин разработал не только карту, но и методику определения поправок в расчетные курсы и составил для этой цели специальные таблицы.
В отличие от проекции Меркатора проекция Ламберта (см. рис. 13, в) сохраняет правильное соотношение площадей материков, морей и др. Ламберт составил также в равновеликой проекции и карты полушарий. По начертанию параллелей и меридианов эта проекция откосится к поперечной азимутальной (рис. 15).
Рис. 15.
Искажения конфигурации материков на карте полушарий в проекции Ламберта значительны. В этом можно убедиться, рассматривая очертания участков земной поверхности протяженностью 10° по широте и 10° по долготе. На глобусе все такие участки, расположенные на одной и той же широте, равны между собой, а на карте их очертания на разных долготах различны. Если у экватора в середине полушария клетка градусной сетки имеет форму квадрата, то к краям карты она сильно вытянута по долготе и сужена по широте. Подобные искажения градусной сетки наблюдаются и на любых других широтах.
Из карты двух полушарий можно составить одну карту мира, которая также имеет свойство равновеликости. Для этого проделаем следующее. На одном из полушарий у пересечения экватора со средним меридианом, имеющим вид прямой линии, подпишем нуль, а вправо и влево от этой точки по экватору дадим оцифровку меридианам через 20° (0, 20, 40, 180°). Получилась картографическая сетка для карты мира. Но если бы мы поместили в этот круг изображения материков с обоих полушарий, то свойство равновеликости было бы нарушено. Чтобы оно сохранилось, нужно из окружности сделать овал, уменьшив вдвое промежутки между параллелями по среднему меридиану. Такую проекцию впервые составил русский ученый-картограф Д. А. Аитов.
Равновеликие проекции часто применяют для составления политической карты мира, так как на ней очень важно показать правильное соотношение площадей различных стран. Политическая карта обычно бывает не в овальной рамке, а в прямоугольной, и в ее углах повторяют изображения одной и той же территории. Такие изображения, вырезанные из северо-западного и северо-восточного углов карты, представлены на рис. 16.
Рис. 16.
Алла Робертовна Швандерова , Анатолий Борисович Венгеров , Валерий Кулиевич Цечоев , Михаил Борисович Смоленский , Сергей Сергеевич Алексеев
Детская образовательная литература / Государство и право / Юриспруденция / Учебники и пособия / Прочая научная литература / Образование и наукаЕвгений Николаевич Колокольцев , Коллектив авторов , Ольга Борисовна Марьина , Сергей Александрович Леонов , Тамара Федоровна Курдюмова
Детская образовательная литература / Школьные учебники и пособия, рефераты, шпаргалки / Языкознание / Книги Для Детей / Образование и наука