Проведем две взаимно перпендикулярные линии и отложим по вертикальной оси вверх отрезок
Рис. 19.
Этот последний отрезок будем считать основанием линейного масштаба для карты 1:20 000 000. В этом масштабе он будет соответствовать 500 км. Чтобы найти расстояние СЕ, от которого нужно отложить основание следующего масштаба (1:25 000 000), пользуются соотношением, полученным из подобия треугольников
Величина DE — основание линейного масштаба — для карты 1:25 000 000 соответственно будет равна 2 см (500 км:25 000 000), значит 8 см. Так же рассчитывают расстояния от точки С до линий, где будут строиться основания линейных масштабов других карт.
Построенный график можно использовать не только для измерения расстояний по картам разных масштабов, но и для определения среднего масштаба по любому меридиану и любой параллели. Масштаб карты по меридиану определяют в следующем порядке. Раствор циркуля-измерителя, соответствующий отрезку меридиана с разностью широт 5 или 10°, будем вести по нашему масштабу вдоль наклонных линий до тех пор, пока он не уложится в расстояние 555 км для 5° или расстояние 1110 км для 10° на какой-либо горизонтальной линии. Масштаб, подписанный над этой линией, будет соответствовать среднему масштабу карты по данному меридиану. Например, отрезок
Чтобы определить масштаб карты по параллели, нужно вначале найти по приведенной выше таблице длину дуги параллели в 5 или 10° на определенной широте, а затем порядок действий будет тот же, что и при определении масштаба карты по меридиану.
Мы сами составляем карты
Перед вами глобус. Как по нему составить карту какого-либо материка, допустим, Африки? Прежде всего выберем проекцию и построим соответствующую ей картографическую сетку в определенном масштабе. Возьмем наиболее простую проекцию — квадратную. На листе бумаги проведем две взаимно перпендикулярные линии. Вертикальную линию будем считать нулевым меридианом, а горизонтальную — экватором. Через равные интервалы проведем параллельные им линии, образующие квадраты. Стороны квадратов, т. е. расстояния между параллельными линиями, зависят от оцифровки параллелей и меридианов и масштаба карты. Предположим, мы хотим составить карту в масштабе 1:50 000 000 (по экватору и меридианам) с густотой картографической сетки 10°. В таком случае сторона квадрата составит 2,22 см (1110 км:50 000 000).
Пользуясь вычерченной сеткой параллелей и меридианов, перенесем с глобуса по соответствующим клеткам контур береговой линии африканского материка.
В пределах каждой клетки рисунок переносится на глаз. Чтобы береговая линия не была ломаной, нужно вначале наметить точки ее пересечения со сторонами клетки, а затем их соединять, учитывая общий изгиб линии.
По картографической сетке можно проверить правильность перенесения береговой линии на карту путем сличения координат соответствующих точек. Так, координаты крайних точек Африки следующие: северной — мыс Эль-Абьяд (37° с. ш., 10° в. д.); южной — мыс Игольный (35° ю. ш., 20° в. д.); западной — мыс Альмади (18° з. д., 15° с. ш.); восточной — мыс Хафун (51° в. д., 10° с. ш.)
Составим еще одну карту — карту Австралии в цилиндрической проекции, но за основу возьмем не глобус, а карту восточного полушария (рис 20, а).
Рис. 20.
Картографическая сетка для нашей карты будет прямоугольной с соотношением сторон клеток 1:2, например, отрезок меридиана в 10° широты будет соответствовать 2 см, а параллели в 10° широты — 1 см. Вычертим рамку карты, и у ее сторон подпишем широты и долготы у соответствующих параллелей и меридианов (рис. 20, 6). Контур материка будем переносить более точно — по опорным пунктам. Для этого на исходной карте определим координаты точек пересечения береговой линии с меридианами или параллелями и направление береговой линии в этих точках (табл. 2).
По координатам нанесем на картографическую сетку опорные пункты и от них на глаз перенесем береговую линию со всеми ее изгибами. Опорные пункты дают возможность более точно перенести с исходной карты контур материка на карту, составляемую в другой проекции.
Алла Робертовна Швандерова , Анатолий Борисович Венгеров , Валерий Кулиевич Цечоев , Михаил Борисович Смоленский , Сергей Сергеевич Алексеев
Детская образовательная литература / Государство и право / Юриспруденция / Учебники и пособия / Прочая научная литература / Образование и наукаЕвгений Николаевич Колокольцев , Коллектив авторов , Ольга Борисовна Марьина , Сергей Александрович Леонов , Тамара Федоровна Курдюмова
Детская образовательная литература / Школьные учебники и пособия, рефераты, шпаргалки / Языкознание / Книги Для Детей / Образование и наука