Читаем Случайность и необходимость полностью

1. Мы можем по крайней мере представить себе объекты, способные к инвариантному воспроизводству, но лишенные какого-либо телеономического аппарата. Один из примеров – кристаллические образования, уровень сложности которых, как известно, намного ниже, чем всех живых организмов, изученных на сегодняшний день.

2. Различие между телеономией и инвариантностью не сводится к простой логической абстракции. Оно обусловлено химией. Из двух основных классов биологических макромолекул класс белков отвечает за телеономические структуры и функции, а класс нуклеиновых кислот обеспечивает генетическую инвариантность.

3. Наконец, как мы увидим в следующей главе, это различие присутствует, явно или неявно, во всех теориях, во всех идеологических построениях (религиозных, научных или философских), касающихся биосферы и ее связей с остальной вселенной.

* * *

Живые существа – необычные объекты. Пусть и смутно, люди осознавали это всегда. Естественные науки, оформившиеся в XVII веке и достигшие своего расцвета в XIX веке, не столько сгладили, сколько, наоборот, обострили это впечатление. По сравнению с физическими законами, управляющими макроскопическими системами, само существование живых организмов представлялось парадоксом, нарушающим фундаментальные принципы, на которых зиждется современная наука. Но какие именно? Ответ неочевиден. Следовательно, главная задача состоит в том, чтобы проанализировать природу этого «парадокса». Это позволит уточнить связь с физическими законами двух важнейших свойств, характеризующих живые организмы: репродуктивной инвариантности и структурной телеономии.

«Парадокс» инвариантности

На первый взгляд инвариантность представляется глубоко парадоксальным свойством, ибо поддержание, воспроизведение и приумножение высокоупорядоченных структур явно противоречат второму закону термодинамики. Согласно данному закону, ни одна макроскопическая система не развивается иначе как в нисходящем направлении, к деградации характеризующего ее порядка.

Впрочем, второй закон справедлив и поддается проверке только в том случае, если мы рассматриваем общую эволюцию энергетически изолированной системы. Внутри такой системы, в одной из ее фаз, мы наблюдаем образование и рост упорядоченных структур, хотя общая эволюция всей системы не перестает удовлетворять второму закону. Лучший пример – кристаллизация насыщенного раствора. Термодинамика такой системы хорошо изучена. Локальное упорядочение, представленное объединением изначально неупорядоченных молекул в идеально организованную кристаллическую сеть, «оплачивается» передачей тепловой энергии от кристаллической фазы к раствору: энтропия – или хаотичность – системы в целом увеличивается в строгом соответствии со вторым законом.

Данный пример показывает, что в изолированной системе локальная упорядоченность не противоречит второму закону. Мы уже указывали, однако, что степень упорядоченности, присущая даже простейшему организму, несравнимо выше степени упорядоченности, свойственной кристаллу. Возникает вопрос: совместимо ли поддержание и инвариантное приумножение таких структур со вторым законом? Проверим это с помощью эксперимента, сопоставимого с процессом кристаллизации.

Возьмем миллилитр воды, содержащий несколько миллиграммов простого сахара, такого как глюкоза, а также минеральные соли, состоящие из элементов, которые входят в химический состав живых организмов (азот, фосфор, сера и др.), и вырастим в этой среде бактерию, например Escherichia coli (длина 2 мкм; вес приблизительно 5×10–13 грамм). Спустя тридцать шесть часов раствор будет содержать несколько миллиардов бактерий. Мы обнаружим, что около 40 % сахара было преобразовано в клеточные компоненты, а остальная часть была окислена в углекислый газ и воду. Проведя эксперимент в калориметре, мы можем подвести термодинамический баланс и убедиться, что, как и в случае кристаллизации, энтропия системы в целом (бактерии плюс среда) возросла на величину, незначительно превышающую минимум, предписываемый вторым законом термодинамики. Таким образом, несмотря на то, что чрезвычайно сложная система, представленная бактериальной клеткой, не только сохранилась, но и приумножилась в несколько миллиардов раз, термодинамический долг, соответствующий этой операции, был должным образом погашен.

Никакого поддающегося определению или измерению нарушения второго закона не произошло. Тем не менее что-то в результатах этого эксперимента неизменно смущает нас, не согласуется с нашими интуитивными представлениями о физике наблюдаемого явления. Но что? Мы видим явный сдвиг процесса в направлении размножения клеток. Последние, конечно, не нарушают законов термодинамики, скорее наоборот. Они используют их так, как это сделал бы хороший инженер, дабы максимально эффективно реализовать замысел и осуществить «мечту» каждой клетки (как выразился Франсуа Жакоб): стать двумя клетками.

Телеономия и принцип объективности

Перейти на страницу:

Все книги серии Эксклюзивная классика

Кукушата Мидвича
Кукушата Мидвича

Действие романа происходит в маленькой британской деревушке под названием Мидвич. Это был самый обычный поселок, каких сотни и тысячи, там веками не происходило ровным счетом ничего, но однажды все изменилось. После того, как один осенний день странным образом выпал из жизни Мидвича (все находившиеся в деревне и поблизости от нее этот день просто проспали), все женщины, способные иметь детей, оказались беременными. Появившиеся на свет дети поначалу вроде бы ничем не отличались от обычных, кроме золотых глаз, однако вскоре выяснилось, что они, во-первых, развиваются примерно вдвое быстрее, чем положено, а во-вторых, являются очень сильными телепатами и способны в буквальном смысле управлять действиями других людей. Теперь людям надо было выяснить, кто это такие, каковы их цели и что нужно предпринять в связи со всем этим…© Nog

Джон Уиндем

Фантастика / Научная Фантастика / Социально-философская фантастика

Похожие книги