Спустя миллионы лет цикл синтеза в такой массивной звезде близок к завершению. Железо отличается от других элементов. В отличие от водорода, гелия и прочих, слияний ядер железа не происходит практически ни при каких обстоятельствах. Ни одна нормальная звезда во Вселенной не способна создать необходимые для этого температуру и давление. В самом сердце звезды, глубоко в ее ядре, тикает, как бомба с часовым механизмом, шар из инертного железа всего в несколько тысяч километров в поперечнике. Как только из кремния синтезируется достаточно железа, эта бомба взрывается.
Неистовство в ночи
А сейчас наконец-то мы подошли к моменту истины. В течение года в ядре массивной звезды накапливалось железо, и все это время оно готовило смертный приговор звезде.
До того момента в жизни звезды ее ядро генерировало энергию; сейчас этот процесс прекратился. Помните, тепло, выделяющееся при ядерном синтезе, — это один фактор, не дающий звезде быть раздавленной собственными силами тяготения.
Второй источник сопротивления силам тяготения — это огромное море электронов в ядре звезды. В нормальном атоме электроны не покидают ядро. Однако в ядре звезды условия настолько критические, что электроны срывает с орбит атомов. Каждый раз, когда электрон стремится привязаться к своему атомному ядру, от интенсивного жара и давления его вновь срывает с орбиты.
В сердцевине звезды электроны очень плотно спрессованы, и в игру вступают причудливые эффекты квантовой механики. Один из них называется
Но проблема заключается в том, что давление от процесса вырождения может противостоять силам тяготения только до определенного предела. По мере накопления железа ядро звезды становится все более и более массивным и ее силы тяготения увеличиваются все больше и больше. Наступает момент, когда железное ядро достигает критической массы, примерно в 1,4 раза больше массы Солнца. В этот момент вырождение проигрывает. Оно просто не в состоянии удерживать всю эту массу. Ранее, когда в звезде синтезировались другие, более легкие элементы, такой момент никогда не наступал: начинали синтезироваться следующие элементы в последовательности, и ядро звезды было в безопасности.
Но из железа другие элементы не синтезируются, поэтому вырождения уже становится недостаточно. Ядро звезды не может противостоять собственным титаническим силам тяготения, и механизм, поддерживающий ее, отказывает. Катастрофически. Ядро коллапсирует… но это не плавное сдутие, как у воздушного шара, выпускающего воздух. Когда ядро массивной звезды коллапсирует, оно действительно
Коллапс происходит невероятно быстро: за тысячную долю секунды — буквально и глазом моргнуть не успеешь — гигантские силы тяготения в ядре звезды сжимают ее от тысяч километров в поперечнике до шара из сверхплотного вещества диаметром всего несколько километров. Стремительность коллапса поражает воображение: вещество сжимается со скоростями более 70 000
События, происходящие в ядре, отзываются во всей звезде. На ядре лежали наружные слои звезды, и коллапс ядра для них — это ситуация, в которой оказывается герой мультфильма, Хитрый Койот, только реальная: когда персонаж внезапно понимает, что у него буквально ушла почва из-под ног и он начинает падать, так же и газ в наружных слоях звезды внезапно обнаруживает, что парит над вакуумом, и обрушивается вниз. Невероятные силы тяготения ядра звезды очень сильно ускоряют газ, и он врезается в сжатое ядро на скорости, составляющей значительную долю от скорости света.
Это создает