Обычный атом состоит из плотного ядра, окруженного облаком отрицательно заряженных
Как вы, возможно, помните из школьного курса, одноименные заряды отталкиваются. Если попытаться сжать два атомных ядра, их взаимно положительные заряды будут этому сопротивляться. Но температуры в недрах звезд достигают миллионов градусов — а значит, атомные ядра летают стремительно, поэтому часто и сильно сталкиваются, — а давление настолько высокое, что ядра очень сильно прижимаются друг к другу. Если электростатическое отталкивание удается преодолеть, в игру вступают новые ядерные силы, которые спаивают атомные ядра воедино.
Такое слияние ядер имеет два аспекта. Во-первых, синтезируется атом нового типа, так как в новом ядре будет больше протонов, чем в каждом из двух ядер до слияния. В общем случае, четыре атома водорода сливаются с образованием гелия (два протона водорода становятся нейтронами в новом ядре гелия), три атома гелия сливаются с образованием углерода и так далее. Реальный процесс на самом деле гораздо сложнее, но основной принцип такой.
Во-вторых, при слиянии ядер выделяется энергия. Если рассматривать ядерный синтез в целом, можно ожидать, что суммарная масса атома, образовавшегося в результате слияния, будет равна сумме масс атомов, участвующих в процессе синтеза, — если слепить два меньших комка глины в один, его масса будет суммой масс двух комков, разумеется. Однако физика атомного ядра отличается от того, что мы наблюдаем в привычном макроскопическом мире: атомы подчиняются законам квантовой механики, в которой объекты обладают причудливыми свойствами и ведут себя отрицающим здравый смысл образом.
В процессе слияния ядер небольшое количество массы преобразуется в энергию. По сравнению с этой массой, образующаяся энергия
Но звезды — это огромные хранилища водорода. Как мы обсуждали в главе 2, в ядре Солнца 700 млн т водорода сливаются с образованием 695 млн т гелия
В звездных масштабах Солнце — довольно большое (большинство звезд гораздо менее массивные, обладают меньшими энергией и яркостью); однако существуют звезды гораздо больших размеров и массы. Процесс ядерного синтеза в ядре звезды очень сильно зависит от ее массы, причем с ростом массы скорость реакций быстро увеличивается. В ядре звезды с массой, в два раза превосходящей массу Солнца, синтез гелия из водорода происходит в десять раз быстрее, чем в ядре Солнца, и, следовательно, ее светимость в десять раз больше. Звезда с массой, в 20 раз превышающей массу Солнца, а таких звезд существует немало, «сжигает» свое ядерное топливо в
Говорят, что даже самая яркая звезда не будет светить вечно. Но в действительности у самых ярких звезд самая короткая жизнь. Даже не знаю, какой вы жизненный урок извлечете из этого.