Соотношение площадей фигур 1:3. Теперь возьмите 1 спичку в бо
льшей группе, переложите её в меньшую, и постройте новые фигуры с тем же соотношением площадей. Только сделайте это так, чтобы 12 спичек из первоначального расположения остались на своих местах.2-114.
Примем за среднюю длину спички 5 сантиметров. Сколько потребуется спичек, чтобы выложить равными квадратами со стороной в одну спичку один квадратный метр?Раздел Г.
Деление фигуры на заданные части и разное.2-115.
Данную фигуру разделите на 4 одинаковые части с помощью 5 спичек.2-116.
Фигуру, составленную из 16 спичек, разделите спичками на две одинаковые части.2-117.
С помощью 7 спичек, разделите фигуру на 3 одинаковые части.2-118.
Данную фигуру (рис. ниже слева) разделите на 4 одинаковые части с помощью 8 спичек.2-119.
Квадрат ограничивают 16 спичек (рис. выше справа). Требуется разделить его на 4 фигуры площадью по 4 у. кв. ед. каждая с помощью 8, 10, 12 спичек (три задания). Разумеется, нельзя класть две спички на одну и ту же сторону. Труднее выполнить условие, используя 11 спичек (четвертое задание).2-120.
Выложенные в форме квадрата 16 спичек представляют изгородь двора. Часть площади двора занята домом, изображенным в виде квадрата из 4 спичек. Остальную часть двора требуется разделить при помощи 10 спичек на 5 участков, одинаковых по форме и по площади.2-121.
Данную фигуру разделите на 4 одинаковые части с помощью 8 спичек.2-122.
Сад, очертание которого изображено 20 спичками, и в середине которого находится дом квадратной формы, требуется:а) разделить 18-ю спичками на 6 равновеликих и одинаковых по форме частей;
б) разделить 20-ю спичками на 8 одинаковых частей.
Раздел Д.
Различные дополнения к геометрии, не вошедшие в предыдущие разделы по разным причинам.Две задачи отличаются тем, что для их формулировки и решения, кроме спичек, нужен соответствующий рисунок на бумаге.
2-123.
Сторона каждого маленького квадрата на рисунке, имеет длину в одну спичку. Требуется разместить ровно 26 спичек вдоль линий таким образом, чтобы они разделили весь чертёж на две части одинаковых размеров и формы, причем в одной из них должны находиться два нарисованных треугольника, а в другой – два круга.2-124.
На бумаге начерчен квадрат со стороной равной длине 4 спичек и прямыми линиями разделён на 16 меньших квадратов.Задача состоит в том, чтобы расположить спички на листе выполняя три условия:
1) каждая спичка должна закрывать сторону одного из маленьких квадратов;
2) у каждого из маленьких квадратов ровно 2 стороны должны быть закрыты спичками;
3) спички нельзя размещать, на краю большого квадрата, то есть по внешним сторонам.
Решите ту же задачу для исходного квадрата с длиной стороны в 5 спичек.
Отдохнем от решения заданий. На уроках школьной геометрии, прежде чем решать задачи, учитель объясняет соответствующие теоремы и доказывает их. Оказывается и теоремы можно доказывать «на спичках». Очень важной для всего курса геометрии является теорема о сумме внутренних углов треугольника. Вот как можно доказать ее с помощью простой спички. Начертив на доске треугольник, положим на одну из его сторон (например, в вершине
Далее, следуя рисунку, будем двигать спичку вдоль стороны, до тех пор, пока ее головка не совпадет с вершиной
Серьезные рассуждения подготовили нас к серьезным задачам. Спичечный коробок по форме представляет собой прямоугольный параллелепипед.
2-125.
Как измерить диагональ спичечной коробки с помощью простой линейки? Нужно обойтись без вычислений, без формулы для квадрата диагонали, который равен сумме квадратов трех измерений параллелепипеда. Стороны параллелепипеда измеряются элементарно, а вот диагональ?2-126.
Воткните в яблоко с двух диаметрально противоположных сторон две спички.