Читаем События и люди. Издание пятое, исправленное и дополненное. полностью

Обычные методы статистической механики допускают как само собой разумеющийся факт возможность произвольной пространственной локализации отдельных частиц ансамбля. Это обстоятельство выступает, например, в некоторых краевых задачах, в которых используются операции «закрепления» отдельных атомов (в цепочке, например, двух крайних).

Однако обычные экспериментальные средства, при помощи которых изучают совокупность частиц, не гарантируют подобной локализации. Этому обстоятельству имеется соответствие в математическом аппарате. Оно состоит в том, что метод «самосогласованного поля» запрещает такую локализацию.

Такова особенность тех решений проблемы многих тел, которые данный метод представляет. Этот метод соответствует другим граничным условиям, налагаемым на функцию распределения D чем принципиально физически и математически отличается от «обычных» методов.

Для ансамбля N одинаковых частиц функция распределения имеет вид

где f — одна и та же функция для всех частиц ансамбля, и, таким образом, невозможно, не выходя за рамки решений, предоставляемых методом «самосогласованного поля», задавать произвольно вид функции распределения для какой-либо одной частицы ансамбля независимо от остальных, а именно это и требуется для осуществления «закреплений» в «обычных» методах.

Таким образом, математический и физический смысл метода «самосогласованного поля» (для одинаковых частиц) запрещает локализацию отдельных частиц ансамбля.


Б. Непосредственная связь между «микро» и «макро»


Метод «самосогласованного поля» порочен, так как из исходной формулы видно, что характер решения может существенно зависеть от K'(0) или K''(0), т. е. «распространение плотности существенно зависит от характера закона взаимодействия при бесконечно малом расстоянии между частицами, что нелепо уже само по себе» [К].

Могло бы казаться, что метод «самосогласованного поля» не корректен, так как из исходного уравнения (1) с самосогласованным потенциалом

видно, что характер решения может существенно зависеть от K(0), т. е. распределение плотности («макро» характеристика) может существенно зависеть от характера закона взаимодействия при бесконечно малом расстоянии между двумя частицами («микро» характеристика), что кажется невероятным.

Но если бы эта зависимость была чувствительной, то непосредственная связь между «микро» и «макро» не являлась бы внутренним противоречивым дефектом теории, а отображала бы ее природу — таков характер теории (интегральные уравнения).

Действительное положение, однако, сложнее.

Ход «ядра» в нуле в уравнении с «самосогласованным» потенциалом (11) определяется расположением частиц не при непосредственном совпадении их центров, а в некоторой малой, но конечной окрестности, и, более того, величина этой области и ход «ядра» внутри этой области в свою очередь зависят от «макро» величин — от распределения плотности вероятности местоположения частиц.

В самом деле, запишем потенциал на основании формулы для ряда Тейлора-Вольтерра (1) так:

откуда видно, что ход ядра «K''» вблизи нуля определяется всеми последующими членами ряда Тейлора. Физически это означает, что, например, на поведение двух частиц при их сближении оказывают влияние, и все большее с уменьшением их расстояния, не «парные» взаимодействия, а «коллективные» в смысле § 1, т. е., например, третья частица (входящая в состав «тройного» взаимодействия K012) и т. д.

Таким образом, для точного уравнения (1) нет проблемы. Естественно, ее не должно быть и для приближенного уравнения, для которого «самосогласованный» потенциал взят просто в виде (11), если приближение взято правильно.

Приближенность соответствует предположению независимости ядра «K'' в (11) от p (линеаризация ядра), что возможно не только для достаточно больших расстояний, когда можно опустить последующие члены ряда Тейлора, ибо степень быстроты их убывания сильно возрастает с увеличением числа членов, но и для достаточно малых расстояний по сравнению и с периодом изменения p — и считать поэтому величину p постоянной.

Таким образом, нет оснований сомневаться в характере приближения.

Ядро приближенного уравнения с потенциалом (11) имеет вид вблизи нуля (полагаем ρ = ρ0)

В итоге получается результат: Зависимость ядер интегрального уравнения с самосогласованным потенциалом (11) вблизи нуля, а следовательно, и решения уравнений существенно зависят от характера закона взаимодействия коллектива частиц (совокупность интегральных членов), в котором закон взаимодействия только двух частиц играет уже сравнительно малую роль.

[Пункты 4–6 опущены.]


7. Заключение


Перейти на страницу:

Похожие книги

Адмирал Советского Союза
Адмирал Советского Союза

Николай Герасимович Кузнецов – адмирал Флота Советского Союза, один из тех, кому мы обязаны победой в Великой Отечественной войне. В 1939 г., по личному указанию Сталина, 34-летний Кузнецов был назначен народным комиссаром ВМФ СССР. Во время войны он входил в Ставку Верховного Главнокомандования, оперативно и энергично руководил флотом. За свои выдающиеся заслуги Н.Г. Кузнецов получил высшее воинское звание на флоте и стал Героем Советского Союза.В своей книге Н.Г. Кузнецов рассказывает о своем боевом пути начиная от Гражданской войны в Испании до окончательного разгрома гитлеровской Германии и поражения милитаристской Японии. Оборона Ханко, Либавы, Таллина, Одессы, Севастополя, Москвы, Ленинграда, Сталинграда, крупнейшие операции флотов на Севере, Балтике и Черном море – все это есть в книге легендарного советского адмирала. Кроме того, он вспоминает о своих встречах с высшими государственными, партийными и военными руководителями СССР, рассказывает о методах и стиле работы И.В. Сталина, Г.К. Жукова и многих других известных деятелей своего времени.Воспоминания впервые выходят в полном виде, ранее они никогда не издавались под одной обложкой.

Николай Герасимович Кузнецов

Биографии и Мемуары
Образы Италии
Образы Италии

Павел Павлович Муратов (1881 – 1950) – писатель, историк, хранитель отдела изящных искусств и классических древностей Румянцевского музея, тонкий знаток европейской культуры. Над книгой «Образы Италии» писатель работал много лет, вплоть до 1924 года, когда в Берлине была опубликована окончательная редакция. С тех пор все новые поколения читателей открывают для себя муратовскую Италию: "не театр трагический или сентиментальный, не книга воспоминаний, не источник экзотических ощущений, но родной дом нашей души". Изобразительный ряд в настоящем издании составляют произведения петербургского художника Нади Кузнецовой, работающей на стыке двух техник – фотографии и графики. В нее работах замечательно переданы тот особый свет, «итальянская пыль», которой по сей день напоен воздух страны, которая была для Павла Муратова духовной родиной.

Павел Павлович Муратов

Биографии и Мемуары / Искусство и Дизайн / История / Историческая проза / Прочее
Достоевский
Достоевский

"Достоевский таков, какова Россия, со всей ее тьмой и светом. И он - самый большой вклад России в духовную жизнь всего мира". Это слова Н.Бердяева, но с ними согласны и другие исследователи творчества великого писателя, открывшего в душе человека такие бездны добра и зла, каких не могла представить себе вся предшествующая мировая литература. В великих произведениях Достоевского в полной мере отражается его судьба - таинственная смерть отца, годы бедности и духовных исканий, каторга и солдатчина за участие в революционном кружке, трудное восхождение к славе, сделавшей его - как при жизни, так и посмертно - объектом, как восторженных похвал, так и ожесточенных нападок. Подробности жизни писателя, вплоть до самых неизвестных и "неудобных", в полной мере отражены в его новой биографии, принадлежащей перу Людмилы Сараскиной - известного историка литературы, автора пятнадцати книг, посвященных Достоевскому и его современникам.

Альфред Адлер , Леонид Петрович Гроссман , Людмила Ивановна Сараскина , Юлий Исаевич Айхенвальд , Юрий Иванович Селезнёв , Юрий Михайлович Агеев

Биографии и Мемуары / Критика / Литературоведение / Психология и психотерапия / Проза / Документальное