Читаем События и люди. Издание пятое, исправленное и дополненное. полностью

Из этого уравнения автор считает возможным определить связь между k и ω. Нахождению этой связи в различных случаях и посвящена большая часть работы [1]. Между тем уравнение (14) бессмысленно, поскольку фигурирующий в нем интеграл расходится при kv — ω = 0.

А. А. Власов пытается обойти эту трудность просто тем, что берет главное значение интеграла, на что, разумеется, нет абсолютно никаких оснований, поскольку расходящийся интеграл можно «взять» также бесчисленным числом других способов. Как известно, если в физической проблеме встречается выражение, не имеющее математического смысла (например, расходящийся интеграл), то это означает, что либо в исходных уравнениях задачи не учтен какой-либо физический эффект, приводящий при его учете к разумным результатам, либо же при решении уравнений допущена математическая ошибка. В случае А. А. Власова дело обстоит именно последним образом, так как уравнение (14) вовсе не вытекает из интегрального уравнения (13). Из этого последнего уравнения вообще не получается какой-либо связи между ω и k таким образом, никакого «дисперсионного уравнения» не существует.

Ошибка А. А. Власова состоит в том, что, как мы указывали, он делит обе части (13) на kv — ω и, таким образом, принимает равенство (см. (4) в [1])

3. В действительности из (13) вытекает не (15), а уравнение, отличающееся от (10) добавленной к правой его части некоторой произвольной функцией от ω и v, равной нулю при к kv ≠ ω и отличной от нуля при kv = 0. Наличие содержащей известный произвол функции и должно обеспечить математическую непротиворечивость решения[46]. Для получения этого решения можно, например, применить к (13) преобразование Фурье. В результате для функции

мы получаем

где

направление k принято за ось x и φ(qy , qz) — произвольная функция. Мы видим, что решение для G(q) содержит произвольную функцию φ(qy , qz) от двух аргументов. Такой же произвол содержится в сопряженной по Фурье с G(q) исходной функции g(v) (представляющей собой функцию несобственную). Кроме функции G(q) в (17) остаются произвольными все четыре параметра kx , ky , kz , ω, и никакой связи между ними не существует.

Кроме того, здесь нужно, конечно, иметь в виду все сказанное нами относительно неприменимости метода «самосогласованного поля». Тем не менее вопрос о дисперсионном уравнении заслуживает отдельного разбора, так как в работе 1938 г. [8] А. А. Власов применял уравнение (12) к электронной плазме. В этом же случае, поскольку рассматриваются кулоновские силы, применение самосогласованного поля и, следовательно, уравнения (eq12) допустимо. Однако исследование вопроса автор опять проводит на основе несуществующего «дисперсионного уравнения» (14), вследствие чего большинство результатов этой работы также неверно. Мы не будем останавливаться на этом вопросе, так как исследование колебаний электронной плазмы проведено в работе Л. Ландау «О колебаниях электронной плазмы» [6]. В этой работе указано, как нужно ставить вопрос о решениях уравнения (12), на чем останавливаться здесь мы также не будем.

Поскольку все содержание работ А. А. Власова [1–5], относящееся к исследованию нестационарного случая, сводится к анализу несуществующего «дисперсионного уравнения», ясно, что его выводы, касающиеся «вибрационных свойств» и «недиссипативных потоков и их спонтанного возникновения в газе», появляются лишь в результате указанных грубых ошибок.

Таким образом, сделанное в начале статьи утверждение об отсутствии в разобранных работах А. А. Власова [1–5] каких-либо положительных результатов представляется нам доказанным.


Литература

1. Власов А. А. // J. Phys. 1946. 9. P. 26.

2. Власов А. А. // J. Phys. 1946. 9. P. 190.

3. Власов А. А. // Известия АН СССР. Сер. физика. 1944. 8, P. 248.

4. Власов А. А. // Ученые записки МГУ. 1945. № 77. С. 3.

5. Власов А. А. // ЖЭТФ. 1945. 15. С. 291.

6. Ландау Л. Д. // ЖЭТФ. 1946. 16. С. 574; Journ. of Phys. 1946. P. 25.

К обобщенной теории плазмы и теории твердого тела[47]

Профессор А. А. Власов

Вестник Московского университета. Физика. Астрономия. 1946. № 3–4. Сокращенный текст


Коллективные взаимодействия, далекие пространственно-временные связи, процессы, не укладывающиеся в обычные рамки задачи Коши. (Ответ В. Гинзбургу, Л. Ландау, М. Леонтовичу, В. Фоку[48].)

1. Новое уравнение

2. Проблема обоснования

3. Особенности метода «самосогласованного поля»: а) отличие от «обычных» методов, б) непосредственная связь между «микро» и «макро»

4. Неборновский кристалл: а) низкие температуры, б) высокие температуры, в) промежуточные температуры

5. Задача Коши, ее решения, особенности и следствия

Перейти на страницу:

Похожие книги

Адмирал Советского Союза
Адмирал Советского Союза

Николай Герасимович Кузнецов – адмирал Флота Советского Союза, один из тех, кому мы обязаны победой в Великой Отечественной войне. В 1939 г., по личному указанию Сталина, 34-летний Кузнецов был назначен народным комиссаром ВМФ СССР. Во время войны он входил в Ставку Верховного Главнокомандования, оперативно и энергично руководил флотом. За свои выдающиеся заслуги Н.Г. Кузнецов получил высшее воинское звание на флоте и стал Героем Советского Союза.В своей книге Н.Г. Кузнецов рассказывает о своем боевом пути начиная от Гражданской войны в Испании до окончательного разгрома гитлеровской Германии и поражения милитаристской Японии. Оборона Ханко, Либавы, Таллина, Одессы, Севастополя, Москвы, Ленинграда, Сталинграда, крупнейшие операции флотов на Севере, Балтике и Черном море – все это есть в книге легендарного советского адмирала. Кроме того, он вспоминает о своих встречах с высшими государственными, партийными и военными руководителями СССР, рассказывает о методах и стиле работы И.В. Сталина, Г.К. Жукова и многих других известных деятелей своего времени.Воспоминания впервые выходят в полном виде, ранее они никогда не издавались под одной обложкой.

Николай Герасимович Кузнецов

Биографии и Мемуары
Образы Италии
Образы Италии

Павел Павлович Муратов (1881 – 1950) – писатель, историк, хранитель отдела изящных искусств и классических древностей Румянцевского музея, тонкий знаток европейской культуры. Над книгой «Образы Италии» писатель работал много лет, вплоть до 1924 года, когда в Берлине была опубликована окончательная редакция. С тех пор все новые поколения читателей открывают для себя муратовскую Италию: "не театр трагический или сентиментальный, не книга воспоминаний, не источник экзотических ощущений, но родной дом нашей души". Изобразительный ряд в настоящем издании составляют произведения петербургского художника Нади Кузнецовой, работающей на стыке двух техник – фотографии и графики. В нее работах замечательно переданы тот особый свет, «итальянская пыль», которой по сей день напоен воздух страны, которая была для Павла Муратова духовной родиной.

Павел Павлович Муратов

Биографии и Мемуары / Искусство и Дизайн / История / Историческая проза / Прочее
Достоевский
Достоевский

"Достоевский таков, какова Россия, со всей ее тьмой и светом. И он - самый большой вклад России в духовную жизнь всего мира". Это слова Н.Бердяева, но с ними согласны и другие исследователи творчества великого писателя, открывшего в душе человека такие бездны добра и зла, каких не могла представить себе вся предшествующая мировая литература. В великих произведениях Достоевского в полной мере отражается его судьба - таинственная смерть отца, годы бедности и духовных исканий, каторга и солдатчина за участие в революционном кружке, трудное восхождение к славе, сделавшей его - как при жизни, так и посмертно - объектом, как восторженных похвал, так и ожесточенных нападок. Подробности жизни писателя, вплоть до самых неизвестных и "неудобных", в полной мере отражены в его новой биографии, принадлежащей перу Людмилы Сараскиной - известного историка литературы, автора пятнадцати книг, посвященных Достоевскому и его современникам.

Альфред Адлер , Леонид Петрович Гроссман , Людмила Ивановна Сараскина , Юлий Исаевич Айхенвальд , Юрий Иванович Селезнёв , Юрий Михайлович Агеев

Биографии и Мемуары / Критика / Литературоведение / Психология и психотерапия / Проза / Документальное