Проведенный А. А. Власовым анализ дисперсионного уравнения для малых продольных колебаний изотропной электронной плазмы с максвелловской равновесной функцией распределения по скоростям показал, что в пренебрежении парными столкновениями частиц в области фазовых скоростей, превышающих тепловую скорость электронов, такие колебания не затухают и обладают следующим законом дисперсии:
где и
хорошо согласовывалось с известными экспериментальными результатами И. Легмюра и Л. Тонкса [8]. Подтверждением правильности теории А. А. Власова следует считать также то, что медленные продольные колебания в чисто электронной плазме оказались невозможными. Именно, в области
Вместе с тем вызывало некоторую неудовлетворенность отсутствие затухания колебаний, хотя в приближении самосогласованного поля взаимодействие частиц учитывалось. Сам А. А. Власов в этом ничего плохого не видел. Более того, парную столкновительную релаксацию, которая, согласно теории Л. Д. Ландау, определяется частотой электрон-ионных столкновений
он считал пренебрежимо малой, поскольку
Более существенным А. А. Власову представлялось дисперсионное расплывание. Оценивая исходя из формулы (12) время расплывания
т. е. это время велико по сравнению с периодом колебаний. Причем роль столкновений определяется величиной
4. В [2] Л. Д. Ландау резко отрицательно отреагировал на отсутствие в теории А. А. Власова диссипации малых колебаний при пренебрежении парными столкновениями. Считая уравнение Власова применимым для описания электронных колебаний плазмы, он тем не менее писал: «Власов искал решения вида exp(
которое исследовалось А. А. Власовым. Здесь
В уравнении (17) фигурирует несобственный интеграл Коши с полюсом подынтегрального выражения на действительной оси интегрирования при
где
описывающей слабое затухание колебаний со спектром (12). Это затухание и стало впоследствии именоваться как «бесстолкновительное» затухание Ландау. Слово «бесстолкновительное» мы поместили в кавычки, поскольку в действительности уравнение Власова многочастичные (или коллективные) столкновения частиц учитывает; оно не учитывает лишь ближние парные взаимодействия. Для учета парных взаимодействий, как мы уже знаем, надо дополнить уравнение Власова в правой его части интегралом столкновений. Учет парных столкновений приведет к дополнительному затуханию
где
Столкновительное затухание (21), так же как и «бесстолкновительное» (20), является малым по сравнению с частотой колебаний (12), что обеспечивается неравенствами (15) и (16). Однако возникает вопрос о соотношении между ними, или, другими словами, о соотношении между столкновительным затуханием и «бесстолкновительным» затуханием Ландау. При условии