Как уже отмечалось выше, проблема устойчивости фронта ударной волны вновь стала в центре внимания исследователей с начала 1970 г., когда это явление получило подтверждение экспериментом, а работа Сергея Петровича [2] — дальнейшее развитие. Ряд обобщений и идей в этой области принадлежит О. А. Синкевичу, которому мы и предоставим слово.
— В настоящее время становится очевидным, что именно механизм устойчивости обеспечивает отбор различных эволюционирующих состояний в живой и неживой природе. Если останавливаться только на неустойчивостях в распределенных системах, то во многих случаях можно выделить неустойчивости, вызванные внутренними состояниями и процессами в среде, и неустойчивости, обусловленные активными границами.
С. П. Дьяков был одним из первых, кто убедительно продемонстрировал роль активных границ в задаче об устойчивости плоских ударных волн с произвольным видом ударной адиабаты Гюгонио
здесь
Кроме условий (8) неустойчивости ударной волны С. П. Дьяков установил, что в области параметров, удовлетворяющих условию
где
существуют решения с незатухающими возмущениями фронта волны (стационарными в некоторой системе координат, скользящей вдоль фронта), к которому со стороны зафронтового течения примыкают звуковые волны, исходящие под определенным углом. Область параметров
была отнесена С. П. Дьяковым к области устойчивости плоских ударных волн относительно малых гофрировочных возмущений.
Последующие многочисленные исследования устойчивости плоских ударных волн [10–11], выполненные различными методами, не изменили границ области возникновения неустойчивости (8). Учет вязкости и теплопроводности газа [14, 15] также не изменили положение границ области (8). Однако уточнения нижней границы области (9), проведенные в работах {9-12, 16], показали, что
Дальнейший, более детальный анализ характера проведения малых возмущений показал, что в устойчивой области, если не учитывать вязкость и теплопроводность газа, возмущения ударной волны могут затухать во времени по степенному закону
В области (9) существования незатухающих (стационарных) гофрировочных возмущений фронта углам ориентации исходящих звуковых волн соответствует резонансное отражение звука фронтом ударной волны [22–25]. В этой области параметров задачи ударная волна, будучи нейтрально устойчивой к малым возмущениям, может оказаться неустойчивой к возмущениям конечной амплитуды, приводящим к расщеплению ударной волны на ударную волну меньшей интенсивности, контактный разрыв и длину разрежения [26–35]. Неустойчивость плоской ударной волны относительно одномерных возмущений тесно связана с эволюционностью поверхности разрыва — фронта ударной волны [22]. В дальнейшем было исследовано поведение малых возмущений на нелинейной стадии для неустойчивой ударной волны [25–35], когда на фронт волны подает конечное возмущение [27] и самопроизвольный распад [31, 32], приводящий для двумерных возмущений распад плоской волны на тройную конфигурацию — скачок [31]. Однако полного ответа на вопрос о характере явлений в неустойчивой области в настоящее время еще нет.
Проблема неустойчивости плоской ударной волны относительно двумерных возмущений тесно связана с тем, что двумерные возмущения могут обладать бесконечно большим коэффициентом роста