Но поскольку, как ясно из предыдущего, простой максимум не может быть ничем из познаваемых или мыслимых вещей, то, намереваясь исследовать его через символы, мы должны вырваться за пределы просто го уподобления. В математике все конечно, иначе там даже воображением представить было бы ничего нельзя. Если мы хотим воспользоваться конечным как примером для восхождения к максимуму просто, то надо, во-первых, рассмотреть конечные математические фигуры вместе с претерпеваемыми ими изменениями (passionibus) и их основаниями; потом перенести эти основания соответственно на такие же фигуры, доведенные до бесконечности; в-третьих, возвести эти основания бесконечных фигур еще выше, до простой бес конечности, абсолютно отрешенной уже от всякой фигуры. Только тогда наше незнание непостижимо осознает, как нам, блуждающим среди загадок, надлежит правильнее и истиннее думать о наивысшем.
Действуя так и приступая к делу под водительством максимальной истины, вспомним сначала разные высказывания святых мужей и высочайших умов, занимавшихся математическими фигурами. Благочестивый Ансельм сравнивал максимальную истину с бесконечной прямизной[55]
; следуя ему, мы обращаемся к фигуре прямизны, которую я изображаю в виде прямой линии. Другие многоопытные мужи сравнивали преблагословенную Троицу с треугольником о трех равных прямых углах[56]; поскольку он, как будет показано, обязательно должен иметь бесконечные стороны, его можно назвать бесконечным треугольником. Мы следуем и за, ними. Третьи, пытаясь представить в математической фигуре бесконечное единство, называли Бога бесконечным кругом. А созерцатели всецело актуального божественного бытия называли Бога как бы бесконечным шаром[57]. Опять-таки, мы покажем, что и они правильно понимали величайший максимум и что смысл у них всех один.ГЛАВА 13 ОБ ИЗМЕНЕНИЯХ, ПРЕТЕРПЕВАЕМЫХ МАКСИМАЛЬНОЙ И БЕСКОНЕЧНОЙ ЛИНИЕЙ
Итак, я утверждаю, что если бы существовала бесконечная линия, она была бы прямой, она была бы треугольником, она была бы кругом, и она была бы шаром; равным образом, если бы существовал бесконечный шар, он был бы кругом, треугольником и линией; и то же самое надо говорить о бесконечном треугольнике и бесконечном круге.
Во-первых, что бесконечная линия будет прямой, очевидно: диаметр круга есть прямая линия, а окружность — кривая линия, большая диаметра; если эта кривая тем меньше в своей кривизне, чем большего круга окружностью она является, то окружность максимального круга, больше которого не может быть, минимально крива, а стало быть, максимально пряма. Минимум совпадает таким образом с максимумом. Даже и на глаз видно, что максимальная линия с необходимостью максимально пряма и минимально крива. Здесь не может оставаться ни тени сомнения, когда мы рас смотрим на фигуре сбоку, что дуга CD большего круга больше отступает от кривизны, чем дуга EF меньшего круга, а та больше отходит от кривизны, чем дуга GH еще меньшего круга, почему прямая линия AB будет дугой максимального круга, который уже не может увеличиться. Так мы видим, что максимальная и бесконечная линия по необходимости совершенно прямая и кривизна ей не противоположна; мало того, кривизна в этой максимальной линии есть прямизна. Это первое, что требовалось доказать.
Во-вторых, как сказано, бесконечная линия есть максимальный треугольник, круг и шар. Для доказательства этого надо рассмотреть на конечных линиях, что заключено в возможности конечной линии; поскольку все, чем конечная линия является в возможности, бесконечная линия есть в действительности, мы сможем увидеть искомое еще яснее.
Мы знаем прежде всего, что конечная линия по своей длине может быть длиннее и прямее; а уже доказано, что максимальная линия — самая длинная и прямая. Потом, если линия AB будет обведена вокруг неподвижной точки А, пока не придет в С, возникнет треугольник. Если вращение будет совершаться, пока В по придет в свое начальное положение, возникнет круг.
Опять-таки, если В будет обведено вокруг неподвижного А до точки, противоположной своему начальному положению, то есть до D, то из линий AB и AD образуется одна непрерывная линия и будет описан полукруг. Наконец, если этот полукруг будет обведен вокруг неподвижного диаметра BD, то получится шар. И этот шар — последняя возможность линии, целиком переходящей в нем в действительность, потому что шар уже не заключает в себе возможности никакой последующей фигуры.
Поскольку, таким образом, в возможности конечной линии заключены все эти фигуры, а бесконечная линия есть действительным образом все то, возможность чего представляет конечная, то, следовательно, бесконечная линия есть и треугольник, и круг, и шар, что и следовало доказать.
Так как ты, наверное, захочешь яснее убедиться, что бесконечное есть действительность всего, что заключено в возможности конечного, дам тебе совершенно удостовериться в этом.
ГЛАВА 14 О ТОМ, ЧТО БЕСКОНЕЧНАЯ ЛИНИЯ ЕСТЬ ТРЕУГОЛЬНИК