Проведение касательных к ним.
Отношение несовершенных фигур в прямолинейному треугольнику, имеющему ту же высоту и, то же основание.
Таблица несовершенных объемных фигур, вписанных в цилиндр.
В каком отношении находятся эти фигуры к конусу, имеющему ту же величину и основание, что и они.
Способ вписать плоскую несовершенную фигуру в параллелограмм так, чтобы отношение -этой фигуры к треугольнику, имеющему ту же высоту и основание, было равно отношению другой удвоенной плоской или объемной несовершенной фигуры к данной несовершенной фигуре, взятой вместе с той совершенной фигурой, в которую она вписана.
10. Перенос известных свойств несовершенных фигур, вписанных в параллелограмм, на отношения пространств, пройденных движущимися с различной степенью скорости телами.
11. О несовершенных фигурах, вписанных в круг.
12. Подтверждение положений, содержащихся в пункте 2, на основании принципов первой философии.
[...] При этом имеется в виду положение, что равенство или неравенство действий, т. е. отношение между ними, обусловливается и определяется равенством и неравенством их причин [...]
О равенстве между поверхностью части шара и кругом.
Как путем вписания несовершенных фигур в параллелограмм может быть найдено любое число равных пропорций между двумя данными линиями.
1. Как найти прямую линию, равную кривой полупараболы. 2. Как найти прямую линию, равную кривой первого полупараболастра. 3. Общий метод нахождения прямых, равных прочим кривым типа параболы.
1. Если две параллельные прямые линии падают на другую прямую, то их отраженные линии также параллельны. 2. Если две прямые, исходящие из одной точки, падают на другую прямую, то продолжения соответствующих отраженных линий образуют угол, равный углу, образуемому линиями впадения. 3. Если две прямые параллельные линии падают на окружность круга, то их отраженные линии внутри круга образуют угол, равный удвоенному углу, образуемому линиями, соединяющими центр круга с точками впадения. 4. Если две линии, исходящие из точки, лежащей вне круга, падают на эту окружность и их отраженные линии внутри круга пересекаются, то последние образуют угол, равный сумме удвоенного угла, образуемого двумя линиями, соединяющими центр круга с точками впадения, и угла, образуемого самими линиями впадения. 5. Если две прямые, исходящие из одной точки, падают на вогнутую сторону какого-нибудь круга и угол, образуемый ими, меньше удвоенного центрального угла, то их линии отражения в случае их пересечения внутри круга образуют угол, который вместе с углом, образуемым линиями впадения, равен удвоенному центральному углу.
6. Если две неравные хорды пересекаются в какой-нибудь точке, а центр круга не лежит между ними, то, где бы ни пересекались их линии отражения, через точку пересечения обеих хорд нельзя провести никакой другой прямой, линия отражения которой проходила бы через точку пересечения обеих указанных линий отражения. 7. Если хорды равны, то вышеуказанное положение не имеет силы. 8. Как через данные точки на периферии круга провести две прямые так, чтобы их линии отражения образовали данный угол. 9. Если прямая проходит через круг и пересекает его радиус таким образом, что часть ее, находящаяся между радиусом и окружностью круга, равна части радиуса, находящейся между центром и точкой пересечения, то линия отражения данной линии параллельна радиусу. 10. Если из какой-нибудь точки внутри круга проведены две прямые к его окружности и их линии отражения пересекаются внутри его, то последние образуют угол, равный трети угла, образуемого линиями впадения.
1. При простом движении любая проведенная через движущееся тело линия остается параллельной линиям, соответствующим ее прежним положениям.
2. Если центр вращающегося круга пребывает в покое и если в этом кругу находится эпицикл, вращающийся в противоположном направлении так, что он в равные промежутки времени описывает равные углы, то всякая проведенная через этот эпицикл прямая будет двигаться параллельно самой себе в прежнем положении.
3. Свойства простого движения.
4. Если жидкость приводится в простое круговое движение, то все ее точки описывают окружности в промежутки времени, пропорциональные их расстояниям от центра движения.
5. Простое движение рассеивает разнородное и соединяет однородное.
[...] Такое движение обычно называется ферментацией [...]
6. Если круг, описываемый телом, находящимся в состоянии простого кругового движения, соизмерим с другим кругом, описываемым точкой, вовлеченной в это движение, то по истечении некоторого промежутка времени все точки обоих кругов снова примут прежнее положение.
Абдусалам Абдулкеримович Гусейнов , Абдусалам Гусейнов , Бенедикт Барух Спиноза , Бенедикт Спиноза , Константин Станиславский , Рубен Грантович Апресян
Философия / Прочее / Учебники и пособия / Учебники / Прочая документальная литература / Зарубежная классика / Образование и наука / Словари и Энциклопедии