Ведь как происходят изменения в словах по этим трем способам, например из слова ### ("Пескарь") после отнятия первого слога получается другое слово — ### ("жизнь"), а после прибавления к этому слову первого слога восстанавливается прежнее слово; и после изменения слогов слово ### ("архонт") становится ### ("Харон"), — так и о телах можно сказать, что они страдают, страдают трояко: или через отнятие, или через прибавление, или через изменение. Через отнятие — например, то, что уничтожается; через прибавление — например, то, что растет; через перемену — например, то, что из здорового состояния впадает в болезнь. Если же будет доказано, что ничто ни от чего не отнимается, что ничто ни к чему не прибавляется и ничто ничем не заменяется, то само собою будет обосновано положение, что нет ничего страдающего. Скажем же сперва о способе отнятия.
Если что-либо от чего-нибудь отнимается, то отнимается или тело от тела, или бестелесное от бестелесного, или тело от бестелесного, или бестелесное от тела. Но ни тело не отнимается от тела, как мы покажем; ни бестелесное — от бестелесного, как мы представим; ни тело — от бестелесного, ни бестелесное — от тела, как мы установим. Следовательно, ничто ни от чего не отнимается. Отнять бестелесное от бестелесного невозможно. Ведь отнимаемое от чего-нибудь не неосязаемо. А бестелесное, будучи неосязаемым, не дает возможности что-либо отнимать или отделять от себя.
Поэтому заблуждаются математики, говоря, что данная прямая делится на две части. Ведь начертанная нам на доске прямая имеет чувственную длину и ширину, а мыслимая или прямая линия есть длина без ширины. И начерченная на доске прямая не будет линией, и начинающие ее делить делят не существующую линию, но несуществующую.
Или иначе: поскольку, по их мнению, линия мыслится состоящею из точек, то пусть некая прямая линия, которую они собираются делить на равные части, будет состоять из нечетного числа точек, например из девяти. Но, деля ее, они или разделят пятую точку — я подразумеваю точку, мыслимую посредине между четырьмя и четырьмя, — или один из отрезков сделают в четыре точки, а другой — в пять. Следовательно, они не могут сказать, что делят пятую точку. Ведь она, по их мнению, не имеет частей, а лишенное частей невозможно мыслить разделенным на части. Следовательно, остается из отрезков линии один сделать в четыре точки, а другой — в пять, что опять нелепо и противоречит их предположению. Ведь они обещают научно разделить данную прямую линию на равные отрезки, а делят ее на неравные.
Точно такое же рассуждение [можно применить] к кругу. Ведь они говорят, что круг есть плоская фигура, ограниченная одной линией, причем все выходящие из центра к периферии прямые у него равны между собою. Далее при этом дается задача разделить круг пополам. А это невозможно. Именно, центр, который лежит в самой середине всего круга, или делится пополам сообразно делению круга на две части, или присоединяется к одному из двух его частей. Но разделить его пополам невозможно. Ведь как можно мыслить делимым то, что лишено частей? Если же он присоединяется к одной из двух частей, то части становятся неравными и круг не делится пополам.