Читаем Солнечные элементы полностью

1–3 — слои п+-, p-, р+-типа в случае n+ — р — р+-структуры и слои p+ — ,p-, п+-типа в случае р+ — р — n+-структуры соответственно; 4 — токосъемные контакты, 5 — просветляющие и защитные покрытия. А — солнечное излучение; Б — его инфракрасная составляющая, проходящая сквозь элемент; I — освещение только тыльной стороны (Е = 1360 Вт/м2); II — освещение только верхней стороны (Е = 1360 Вт/м2); III — одновременное освещение верхней (Е = 1360 Вт/м2) и тыльной стороны элемента (Е = 420 Вт/м2)

Следует отметить, что оптические характеристики прозрачных солнечных элементов из различных полупроводниковых материалов с отражающими покрытиями на тыльной стороне весьма близки к оптическим характеристикам дихроических светоделительных зеркал, что делает весьма перспективным применение таких солнечных элементов для создания высокоэффективных фотоэлектрических систем со спектральным разделением солнечного излучения и последующим преобразованием его в электроэнергию элементами с различной спектральной чувствительностью. Прозрачные солнечные элементы могут при этом выполнять одновременно две функции: активно преобразующего элемента системы и светоделительного зеркала.

Советскими специалистами была впервые высказана также идея о том, что можно создать двусторонние солнечные элементы, совмещая элементы, прозрачные в инфракрасной области спектра, с элементами с изотипным переходом у тыльной поверхности n+ — р — р+- или p+ — p — n+-структуры (рис. 4.3, а). При уменьшении толщины базового слоя или увеличении диффузионной длины неосновных носителей заряда за счет использования более высокоомного кремния такие двусторонние элементы столь же эффективно преобразуют свет, падающий сзади, как и элементы со вторым p-n-переходом у тыльной поверхности.

Введение изотипного перехода в конструкцию прозрачных солнечных элементов позволяет резко снизить скорость поверхностной рекомбинации S на тыльной поверхности и увеличить коэффициент собирания неосновных носителей заряда (при L/l1) двусторонних солнечных элементов, освещаемых сзади, до значений, характерных для этого коэффициента при освещении солнечных элементов с верхней лицевой поверхности (рис. 4.3, б).

В отличие от самых первых моделей элементов двусторонней конструкции с двумя p-n-переходами (на передней и тыльной сторонах элемента), предложенных еще в начале 60-х годов, в двусторонних элементах с изотипным переходом не наблюдается увеличения обратного тока насыщения при освещении только верхней лицевой поверхности солнечных элементов. В то же время нанесение токосъемных контактов на обе поверхности может производиться одновременно при использовании однократного фотолитографического процесса (одновременная засветка с двух сторон).

Изготовление двусторонних солнечных элементов не сложнее производства солнечных элементов и батарей с односторонней чувствительностью, прошедших многолетнюю проверку при эксплуатации в космосе. Изотипный барьер под сетчатым тыльным контактом можно создать ионным подлегированием бором с последующим термическим отжигом или нанесением методом химической пульверизации прозрачной токопроводящей пленки SnO2 (образование изотипного перехода происходит при этом в основном за счет влияния встроенного электрического заряда).

G целью увеличения эффективности двусторонних солнечных элементов с изотипным тыльным переходом желательно использовать при создании базового слоя более высокоомный, чем обычно, материал, например, перейти от монокристаллического кремния с p=0,5?1,5 Омxсм к кремнию с p=7,5?10 Омxсм (или уменьшить толщину базового слоя).

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука