Читаем Солнечные элементы полностью

В качестве примера на рис. 4.4 представлена спектральная зависимость чувствительности и коэффициента собирания одного из солнечных элементов из монокристаллического кремния с ПОП-структурой и тонким промежуточным слоем (десятки ангстрем) оксида SiOx на поверхности кремния. Верхний прозрачный проводящий слой (пленка ITO)[8] был нанесен методом химической пульверизации из смеси оксидов индия и олова. Толщина этого слоя 700 А (при поверхностном слоевом сопротивлении около 120 Om/?), вследствие чего он одновременно выполнял роль эффективного просветляющего покрытия. У полученных солнечных элементов при измерении на имитаторе внеатмосферного Солнца КПД составлял 10,8 %. Это значение может быть существенно увеличено путем снижения последовательного сопротивления элементов, в частности, за счет оптимизации свойств пленки ITO, а также размеров и толщины контактной сетки на верхней освещаемой поверхности элементов.

Рис. 4.4. Спектральная зависимость чувствительности (1) и коэффициента собирания (2) солнечного элемента с гетероструктурой ITO — SiOx — Si (монокристаллический кремний n-типа с удельным сопротивлением ? = 10 Омxсм).

Рис. 4.5. Спектральная зависимость коэффициента поглощения кремния

1 — монокристаллический; 2 — нелегированный аморфный с водородом; 3,4 — аморфный n- и р — типа соответственно

Для получения дешевых и в то же время достаточно эффективных солнечных элементов перспективно использование кремниевых слоев, полученных на графитовых пластинках или пленках (так называемого «кремния на графитовой ткани»).

Типичный процесс изготовления дешевых и высокоэффективных солнечных элементов, как показано в ряде детальных исследований, состоит из следующих этапов:

распыление расплава металлургического кремния и его очистка посредством многократного выщелачивания в водной среде;

осуществление направленной кристаллизации расплава на поверхности термостойких графитовых пластин, лент или тканей (служащих подложками), в результате которой образуются слои металлургического кремния р+-типа с низким удельным сопротивлением (0,01 Омxсм), состоящие из довольно крупных кристаллитов;

последовательное выращивание эпитаксиального слоя p-Si толщиной ~25 мкм с удельным сопротивлением 0,1–1,0 Омxсм и неоднородно легированной пленки n+-Si толщиной ~10 мкм методом химического осаждения из паровой фазы с использованием термически активированной реакции восстановления трихлорсилана (необходимая легирующая примесь содержится в водороде) при температуре подложки около 1150o C и средней скорости роста ~1 мкм/мин;

получение контактной сетки с помощью вакуумного испарения Ti и Ag через металлическую маску;

создание просветляющего покрытия из SnO2 путем окисления тетраметилолова пои температуре 400o C в атмосфере Аr;

отжиг полученной структуры в атмосфере Не, стимулирующий диффузию примесей к границе зерен.

Графитовая пластина служит омическим контактом к р+-области элемента, достаточно структурно совершенные эпитаксиальные слои кремния обеспечивают эффективное образование и собирание носителей заряда, обладающих в таких слоях большим временем жизни, а низкоомная подложка из металлургического кремния p+-типа обусловливает появление электрического поля на границе раздела p-Si — p+-Si вблизи тыльной поверхности. Вследствие неоднородного легирования верхнего слоя n+-Si в нем образуется тянущее электрическое поле.

Проводимые испытания стабильности солнечных элементов рассмотренных моделей должны выявить физико-химическую совместимость всех слоев, использованных в таких многослойных структурах, при непрерывном освещении и повышенной температуре. Несомненно, однако, что для обеспечения длительной эксплуатации новых солнечных элементов потребуется тщательная герметизация и защита их от влияния внешней среды.

Тонкопленочные солнечные элементы из аморфного кремния и других полупроводниковых материалов

В настоящее время большое число исследований посвящено тонкопленочным солнечным элементам на основе аморфного кремния, так называемого ?-Si, — интересного полупроводникового материала, который получается в основном разложением соединений кремния в высокочастотном разряде в вакууме.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука