Мы хотели бы иметь здесь дело только с такими читателями, которые питают склонность к арифметике и геометрии, хотя для меня было бы и лучше, если бы они совсем не занимались ими, нежели были обучены в этих науках по обычному методу, ибо правила, предлагаемые мной, легче применимы к этим наукам, в изучении которых они вполне удовлетворяют, чем ко всякому другому роду вопросов. Польза же этих правил в приобретении знаний более высокого порядка столь велика, что я не страшусь назвать эту часть нашего метода созданной не для решения математических проблем и говорить, что скорее математические науки надлежит изучать лишь для практического усвоения этого метода. Я не предполагаю в этих науках ничего, что не могло бы быть известно само собой и доступно для всех, но знания в этой области, как это имеет обычно место, если и не содержат в себе очевидных заблуждений, то затемняются большим количеством двусмысленных и дурно установленных принципов, что мы в дальнейшем постараемся кой-где исправить.
Под протяженным мы разумеем все то, что обладает длиной, шириной и глубиной, не интересуясь, будет это какое-либо реальное тело или только пространство. Мне кажется, что здесь нет нужды давать более подробное объяснение, ибо нет ничего легче, как представить это в своем воображении. Так как, однако, ученые часто пользуются столь тонкими различиями, что утрачивают естественный свет и находят мрак даже в таких вещах, которые понятны крестьянам, то нужно напомнить им, что мы не рассматриваем здесь протяжение как нечто отличное от его субъекта и что мы вообще не признаем такого рода философских естеств, которых реально не может представить наше воображение. Ибо если кто-нибудь и сумеет убедить себя в том, что при уничтожении всех протяженных вещей, существующих в природе, нельзя отрицать существования протяжения самого по себе, то для представления последнего он воспользуется не идеей тела, а только ложными суждениями своего интеллекта. С этим он согласится сам, если внимательно обдумает образ такого протяжения, попытавшись представить его в своем воображении. Действительно, он увидит, что представляет его не освобожденным от всех вещей, но совершенно иначе, чем он думал. Таким образом, подобные отвлеченные вещи (каковы бы ни были представления интеллекта об истине вещи) никогда не создаются воображением отдельно от их предмета.
Но поскольку мы отныне не предпринимаем ничего, не прибегая к помощи воображения, то для нас весьма важно тщательно различать, какие идеи даются нашему интеллекту в значении каждого слова. Поэтому мы предлагаем рассмотреть следующие три вида выражений:
Первое показывает, как протяжение принимается за то, что имеет протяжение. Действительно, я разумею совершенно одно и то же, говоря, что протяжение занимает место, и когда говорю:
Перейдем теперь к выражению: