Haug J. T., Caron J.-B., Haug C.
2013. Demecology in the Cambrian: synchronized molting in arthropods from the Burgess Shale // BMC Biology, 11, 64. DOI: 10.1186/1741-7007-11-64Hints O. et al.
2010. Biodiversity patterns of Ordovician marine microphytoplankton from Baltica: Comparison with other fossil groups and sea-level changes // Palaeogeography, Palaeoclimatology, Palaeoecology, 294, 161–73.Holland P. W. H.
2015. Did homeobox gene duplications contribute to the Cambrian explosion? // Zoological Letters, 1, 1. DOI: 10.1186/s40851-014-0004-xJanvier P.
1996. Early Vertebrates. Oxford: Oxford Univ. Press, 393 p. (Oxford Monographs on Geology and Geophysics, 33).Klemetsen A.
2010. The charr problem revisited: exceptional phenotypic plasticity promotes ecological speciation in postglacial lakes // Freshwater Reviews, 3, 49–74.Kowalewski M., Kelley P. H., eds.
2002. The Fossil Record of Predation // Paleontological Society Papers, 8, 1–398.Kröger B., Vinther J., Fuchs D.
2011. Cephalopod origin and evolution: A congruent picture emerging from fossils, development and molecules // Bioessays, 33, 602–13.Krumbein W. E., Paterson D. M., Stal L. J., eds.
1994. Biostabilization of Sediments. Oldenburg: Bibliotheks und Informationssystem der Carl von Ossietzky Universität, 526 p.Lamsdell J. C., Hoşgör I., Selden P. A.
2013. A new Ordovician eurypterid (Arthropoda: Chelicerata) from southeastern Turkey: Evidence for a cryptic Ordovician record of Eurypterida // Gondwana Research, 23, 354–66.Lee M. S. Y., Soubrier J., Edgecombe G. D.
2013. Rates of phenotypic and genomic evolution during the Cambrian Explosion // Current Biology, 23, 1889–95.Lenton T. M. et al.
2014. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era // Nature Geoscience, 7, 257–65.Logan G. A. et al.
1995. Terminal Proterozoic reorganization of biogeochemical cycles // Nature, 376, 53–6.Ma X., Edgecombe G. D., Hou X., Goral T., Strausfeld N. J.
2015. Preservational pathways of corresponding brains of a Cambrian euarthropod // Current Biology, 25, 1–7. DOI: 10.1016/j.cub.2015.09.063Marshall D. J., Lamsdell J. C., Shpinev E., Braddy S. J.
2013. A diverse chasmataspidid (Arthropoda: Chelicerata) fauna from the Early Devonian (Lochkovian) of Siberia // Palaeontology, 57, 631–55.Martin R. E., Quigg A., Podkovyrov V.
2008. Marine biodiversification in response to evolving phytoplankton stoichiometry // Palaeogeography, Palaeoclimatology, Palaeoecology, 258, 277–91.Meysman F. J. R., Middelburg J. J., Heip C. H. R.
2006. Bioturbation: a fresh look at Darwin’s last idea // TRENDS in Ecology and Evolution, 21, 688–95.Mills D. B., Canfield D. E.
2016. A trophic framework for animal origins // Geobiology, 15, 197–210.Moysiuk J., Smith M. R., Caron J.-B.
2017. Hyoliths are Palaeozoic lophophorates // Nature, 541, 394–7.Müller K. J., Walossek D.
1987. Morphology, ontogeny and life-habit of Agnostus pisiformis from the Upper Cambrian of Sweden // Fossils and Strata, 19, 1–124.Ortega-Hernández J., Van Roy P., Lerosey-Aubril R.
2016. A new aglaspidid euarthropod with a six-segmented trunk from the Lower Ordovician Fezouata Konservat-Lagerstätte, Morocco // Geological Magazine, 253, 524–36.Parker A. R.
2011. On the origin of optics // Optics & Laser Technology, 43, 323–9.Penny A. M., Wood R. A., Zhuravlev A. Yu., Curtis A., Bowyer F., Tostevin R.
2017. Intraspecific variation in an Ediacaran skeletal metazoan: Namacalathus from the Nama Group, Namibia // Geobiology, 15, 81–93.Pruss S. B., Finnegan S., Fischer W. W., Knoll A. H.
2011. Carbonates in skeleton-poor seas: New insights from Cambrian and Ordovician strata of Laurentia // Palaios, 25, 73–84.