Ishikawa T. et al.
2011. Irreversible change of the oceanic carbon cycle in the earliest Cambrian: High-resolution organic and inorganic carbon chemostratigraphy in the Three Gorges area, South China // Precambrian Research, 225, 190–208.Ivantsov A. Yu., Fedonkin M. A.
2002. Conulariid-like fossil from the Vendian of Russia: A metazoan clade across the Proterozoic/Palaeozoic boundary // Palaeontology, 45, 1219–29.Knoll A. H., Walter M. R., Narbonne G. M., Christie-Blick N.
2006. The Ediacaran Period: a new addition to the geologic time scale // Lethaia, 39, 13–30.Laflamme M., Xiao S., Kowalewski M.
2009. Osmotrophy in modular Ediacara organisms // Proceedings of the National Academy of Sciences of the USA, 1060, 14438–43.Liu A. G., McIlroy D., Matthews J. J., Brasier M. D.
2012. A new assemblage of juvenile Ediacaran fronds from the Drook Formation, Newfoundland // Journal of the Geological Society of London, 169, 395–403.Lloyd S. J. et al.
2012. Sustained low marine sulfate concentrations from the Neoproterozoic to the Cambrian: Insights from carbonates of northwestern Mexico and eastern California // Earth and Planetary Science Letters, 339–340, 79–94.McKenzie J. A., Vasconcelos C.
2009. Dolomite Mountains and the origin of dolomite rock of which they mainly consist: historical developments and new perspective // Sedimentology, 56, 205–19.Mentel M. et al.
2014. Of early animals, anaerobic mitochondria, and a modern sponge // Bioessays, 36, 924–32.Mitchell E. G. et al.
2015. Reconstructing the reproductive mode of an Ediacaran macro-organism // Nature, 524, 343–6.Notholt A. J. G., Jarvis I., eds.
1990. Phosphorite Research and Development. London: Geol. Soc., 326 p. (Geological Society of London, Special Publication, 52).Poulton S. W., Fralick P. W., Canfield D. E.
2010. Spatial variability of oceanic redox structure 1.8 billion years ago // Nature Geoscience, 7, 3, 486–90.Pratt B.
1998. Molar-tooth structure in Proterozoic carbonate rocks: Origin from synsedimentary earthquakes, and implications for the nature and evolution of basins and marine sediment // Geological Society of America Bulletin, 110, 1028–45.Reinhard C. T. et al.
2017. Evolution of the global phosphorus cycle // Nature, 541, 386–9.Roberson A. L., Roadt J., Halevy I., Kasting J. F.
2011. Greenhouse warming by nitrous oxide and methane in the Proterozoic Eon // Geobiology, 9, 313–20.Seilacher A.
1992. Vendobionta and Psammocorallia: Lost constructions of the Precambrian evolution // Journal of the Geological Society of London, 149, 607–13.Shen B. et al.
2016. Molar tooth carbonates and benthic methane fluxes in Proterozoic ocean // Nature Communications, 7, 10317. DOI: 10.1038/ncomms10317.Shields-Zhou G., Och L.
2011. The case for a Neoproterozoic Oxygenation Event: Geochemical evidence and biological consequences // GSA Today, 21, 4–11.Singer A., Plotnick R., Laflamme M.
2013. Experimental fluid mechanics of an Ediacaran frond // Palaeontologia Electronica, 15, 2 (19A), 14 p. palaeo-electronica.org/content/2012-issue-2-articles/255-frond-biomechanicsSperling E. A., Knoll A. H., Girgius P. R.
2015. The ecological physiology of Earth’s second oxygen revolution // Annual Review of Ecology, Evolution, and Systematics, 46, 215–35.Sperling E. A. et al.
2015. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation // Nature, 523, 451–4.Tostevin R. et al.
2016. Low-oxygen waters limited habitable space for early animals // Nature Communications, 7, 12818. DOI: 10.1038/ncomms12818Vasconcelos C. et al.
2006. Lithifying microbial mats in Lagoa Vermelha, Brazil: modern Precambrian relics? // Sedimentary Geology, 185, 175–83.