Sagan C., Mullen G.
1972. Earth and Mars: Evolution of atmospheres and surface temperatures // Science, 177, 52–6.Schidlowski M.
1998. Application of stable carbon isotopes to early biochemical evolution on Earth // Annual Review of Earth and Planetary Sciences, 15, 47–72.Schoell M., Wellmer F.-W.
1981. Anomalous 13С depletion in early Precambrian graphites from Superior Province, Canada // Nature, 290, 696–9.Schopf J. W., Klein C., eds.
1992. The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge et al.: Cambridge Univ. Press, 1348 p.Schopf J. W. et al.
2017. SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope composition // Proceedings of the National Academy of Sciences of the USA. DOI: 10.1073/pnas.1718063115Schwartzman D. W., Lineweaver C. H.
2004. The hyperthermophilic origin of life revisited // Biochemical Society Transactions, 32, 168–71.Searle R., ed.
2016. Mid-Ocean Ridges. Cambridge: Cambridge Univ. Press, 330 p.Sergeev V. N., Knoll A. H., Vorob’eva N. G., Sergeeva N. D.
2016. Microfossils from the lower Mesoproterozoic Kaltasy Formation, East-European Platform // Precambrian Research, 278, 87–107.Shih P. M., Hemp J., Ward L. M., Matzke N. J., Fischer W. W.
2017. Crown group Oxyphotobacteria postdate the rise of oxygen // Geobiology, 15, 19–29.Som S. M., Catling D. C., Harnmeijer J. P., Polivka P. M., Buick R.
2012. Air density 2.7 billion years ago limited to less than twice modern levels by fossil raindrop imprints // Nature, 484, 359–62.Som S. M. et al.
2016. Earth air pressure 2.7 billion years ago constrained to less than half of modern levels // Nature Geoscience, DOI: 10.1038/NGEO2713Strother P. K., Battison L., Brasier M. D., Wellman C. H.
2011. Earth’s earliest non-marine eukaryotes // Nature, 473, 505–9.Stüeken E. E. et al.
2016. Modelling pN2 through geological time: Implications for planetary climates and atmospheric biosignatures // Astrobiology, 16 (12). DOI: 10.1089/ast.2016.1537Stuiver M., Kromer B., Becker B., Ferguson C. W.
1986. Radiocarbon age calibration back to 13, 300 years BP and the 14C age matching of the German oak and US bristlecone pine chronologies // Radiocarbon, 28, 969–79.Sugitani K. et al.
2015. Early evolution of large micro-organisms with cytological complexity revealed by microanalyses of 3.4 Ga organic-walled microfossils // Geobiology, 13, 507–21.Tang Q. et al.
2013. Organic-walled microfossils from the early Neoproterozoic Liulaobei Formation in the Huainan region of North China and their biostratigraphic significance // Precambrian Research, 236, 157–81.Tartèse R., Chaussidon M., Gurenko A., Delarue F., Robert F.
2017. Warm Ar oceans reconstructed from oxygen isotope composition of early-life remnants // Geochemical Perspective Letters, 3, 55–65.Tziperman E., Halevy I., Johnston D. T., Knoll A. H., Schrag D. P.
2011. Biologically induced initiation of Neoproterozoic snowball-Earth events // Proceedings of the National Academy of Sciences of the USA, 108, 15091–6.Tyler S. A., Barghoorn E. S.
1954. Occurrence of structurally preserved plants in Precambrian rocks of the Canadian Shield // Science, 119, 606–8.Ueno Y. et al.
2009. Geological sulphur isotopes indicate elevated OCS in the Archean atmosphere, solving faint young sun paradox // Proceedings of the National Academy of Sciences of the USA, 106, 14784–9.Valley J. W., Peck W. H., King E. M., Wilde S. A.
2002. A cool early Earth // Geology, 30, 351–4.Wacey D., Kilburn M. R., Saunders M., Cliff J., Brasier M. D.
2011. Microfossils of 3.4-billion-year-old rocks of Western Australia // Nature Geoscience, 4, 698–702.