Gradstein F. M., Ogg J. G., Schmitz M. D., Ogg G. M., eds.
2012. The Geologic Time Scale 2012. V. 1. Amsterdam: Elsevier, 1144 p.Grosch E. G., Hazen R. M.
2015. Microbes, mineral evolution, and the rise of microcontinents — Origin and coevolution of life with early Earth // Astrobiology, 15 (10). DOI: 10.1089/ast.2015.1302Grotzinger J. P., Kasting J. F.
1993. New constraints on Precambrian ocean composition // The Journal of Geology, 101, 235–43.Grotzinger J. P., Knoll A. H.
1999. Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks? // Annual Review of Earth and Planetary Sciences, 27, 313–58.Gumsley A. P. et al.
2017. Timing and tempo of the Great Oxidation Event // Proceedings of the National Academy of Sciences of the USA, 114, 1811–6.Habicht K. S., Gade M., Thamdrup B., Berg P., Canfield D. E.
2002. Calibration of sulphate levels in the Archean ocean // Science, 298, 2372–4.Hallbauer D. K.
1978. Witwatersrand gold deposits. Their genesis in the light of morphological studies // Gold Bulletin, 11 (1), 18–23.Halverson G. P. et al.
2005. Towards a Neoproterozoic composite carbon-isotope record // Geological Society of America Bulletin, 117, 1181–207.Hao J., Sverjensky D. A., Hazen R. M.
2017. A model for late Archean chemical weathering and world average river water // Earth and Planetary Science Letters. DOI: 10.1016/j.epsl.2016.10.021.Hazen R. M. et al.
2008. Mineral evolution // American Mineralogist, 93, 1693–1720.Hazen R. M. et al.
2011. Needs and opportunities for mineral evolution research // American Mineralogist, 96, 953–63.Heinrich C. A.
2015. Witwatersrand gold deposits formed by volcanic rain, anoxic rivers and Archaean life // Nature Geoscience, 8, 206–9.Hoffman P. F. et al.
2017. Snowball Earth climate dynamics and Cryogenian Geology-Geobiology // Science Advances, 3, e1600983. DOI: 10.1126/sciadv.1600983Husnik F., McCutcheon J. P.
2016. Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis // Proceedings of the National Academy of Sciences of the USA, 113, E5416–24.Igisu M. et al.
2009. Micro-FTIR signature of bacterial lipids in Proterozoic microfossils // Precambrian Research, 173, 19–26.Javaux E. J., Marshall C. P., Bekker A.
2010. Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits // Nature, 463, 934–8.Johnson J. E. et al.
2013. Manganese-oxidizing photosynthesis before the rise of cyanobacteria // Proceedings of the National Academy of Sciences of the USA, 110, 11238–43.Jørgensen B. B., Cohen Y., Revsbech N. P.
1986. Transition from anoxygenic to oxygenic photosynthesis in a Microcoleus chthonoplastes cyanobacterial mat // Applied and Environmental Microbiology, 51, 408–17.Kah L. C., Riding R.
2007. Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria // Geology, 35, 799–802.Kasting J. F.
2005. Methane and climate during the Precambrian era // Precambrian Research, 137, 119–29.Kaufman A. J., Xiao S.
2003. High CO2 levels in the Proterozoic atmosphere estimated from analyses of individual microfossils // Nature, 425. 279–82.Kemp A. E. S., ed.
1996. Palaeoclimatology and Palaeoceanography from Laminated Sediments. Bath: Geol. Soc. London. 258 p. (Geological Society of London, Special Publication, 116).Kempe S., Kazmierczak J.
2002. Biogenesis and early life on Earth and Europa: Favored by an alkaline ocean? // Astrobiology, 2, 123–30.Kirschvink J. L., Kopp R. E.
2008. Palaeoproterozoic ice houses and the evolution of oxygen-mediated enzymes: the case for a late origin of photosystem II // Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363, 2755–65.