Koeksoy E., Halama M., Konhauser K. O., Kappler A.
2016. Using modern ferruginous habitats to interpret Precambrian banded iron formation deposition // International Journal of Astrobiology, 15, 205–17.Knoll A. H., Javaux E. J., Hewitt D., Cohen P.
2006. Eukaryotic organisms in Proterozoic oceans // Philosophical Transactions of the Royal Society of London B: Biological Sciences, 361, 1023–38.Knoll A. H., Canfield D. E., Konhauser K. O., eds.
2012. Fundamentals of Geobiology, 1st ed. Chichester: Wiley-Blackwell, 456 p.Konhauser K. O., Kappler A., Roden E. E.
2011. Iron in microbial metabolism // Elements, 7, 89–93.Kump L. R., Barley M. E.
2007. Increased subaerial volcanism and the rise of athmospheric oxygen 2.5 billion years ago // Nature, 448, 1033–6.Lécuyer C.
2016. Seawater residence times of some elements of geochemical interest and the salinity of the oceans // Bulletin de la Société géologique de France, 187, 245–60.Lepland A. et al.
2014. Potential influence of sulphur bacteria on Palaeoproterozoic phosphogenesis // Nature Geoscience, 7, 20–4.Li Z.-X., Evans D. A. D., Halverson G. P.
2013. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland // Sedimentary Geology, 294, 219–32.Li Z.-X., Evans D. A. D., Murphy J. B., eds.
2016. Supercontinent Cycles Through Earth History. Bath: Geol. Soc. London, 297 p. (Geological Society of London, Special Publication, 424).Liu X.-M. et al.
2016. Tracing Earth’s O2 evolution using Zn/Fe ratios in marine carbonates // Geochemical Perspectives Letters, 2, 24–34.Lyell C.
1851. On fossil rain-marks of the Recent, Triassic, and Carboniferous periods // Quarterly Journal of the Geological Society, 7, 238–47.Lyons T. W., Reinhard C. T., Planavsky N. J.
2014. The rise of oxygen in Earth’s early ocean and atmosphere // Nature, 506, 307–15.Marin-Carbonne J., Robert F., Chaussidon M.
2014. The silicon and oxygen isotope composition of Precambrian cherts: A record of oceanic paleo-temperatures? // Precambrian Research, 247, 223–34.Marshall C. P., Javaux E. J., Knoll A. H., Walter M. R.
2005. Combined micro-Fourier transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of Proterozoic acritarchs: A new approach to Palaeobiology // Precambrian Research, 138, 208–24.Martin F.
1993. Acritarchs: A review // Biological Reviews, 68, 475–538.Marty B., Zimmermann I., Pujol M., Burgess R., Philippot P.
2013. Nitrogen isotopic composition and density of the Archean atmosphere // Science, 342, 101–4.Matthews R. K., Frohlich C., Duffy A.
1997. Orbital forcing of global change throughout the Phanerozoic: A possible stratigraphic solution to the eccentricity phase problem // Geology, 25, 807–10.Melezhik V. A., ed.
2013. Reading the Archive of Earth’s Oxygenation. V. 3: Global Events and the Fennoscandian Arctic Russia — Drilling Early Earth Project. Berlin; Heidelberg: Springer, p. 1048–1552.Michaelian K., Simeonov A.
2015. Fundamental molecules of life are pigments which arose and co-evolved as a response to the thermodynamic imperative of dissipating the prevailing solar spectrum // Biogeosciences, 12, 4913–37.Moczydłowska M., Landing E., Zang W., Palacios T.
2011. Proterozoic phytoplankton and timing of chlorophyte algae origins // Palaeontology, 54, 721–33.Nance R. D., Murphy J. B., Santosh M.
2013. The supercontinent cycle: A retrospective essay // Gondwana Research, 25, 4–29.Noffke N., Christian D., Wacey D., Hazen R. M.
2013. Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara, Western Australia // Astrobiology, 13, 1103–24.