Bontognali T. R. R. et al.
2010. Dolomite formation within microbial mats in the coastal sabkha of Abu Dhabi (United Arab Emirates) // Sedimentology, 57, 824–44.Bowyer F., Wood R. A., Poulton S. W.
2017. Controls on the evolution of Ediacaran metazoan ecosystem: A redox perspective // Geobiology, 15, 516–51.Brasier M. D., Antcliffe J. B.
2008. Dickinsonia from Ediacara: A new look at morphology and body construction // Palaeogeography, Palaeoclimatology, Palaeoecology, 270, 311–323.Brasier M. D., Antcliffe J. B.
2009. Evolutionary relationships within the Avalonian Ediacara biota: new insights from laser analysis // Journal of the Geological Society of London, 166, 2, 363–84.Brasier M. D., Callow R. H. T.
2007. Changes in the patterns of phosphatic preservation across the Precambrian — Cambrian transition // Memoirs of the Association of Australasian Palaeontologists, 34, 377–89.Brennan S. T., Lowenstein T. K., Horita J.
2004. Seawater chemistry and the advent of biocalcification // Geology, 32, 473–6.Buckland W.
1829. On the discovery of coprolites, or fossil faeces, in the Lias at Lyme Ridges, and in other formations // Transactions of the Geological Society of London, 3, 223–36.Buick R., Des Marais D. J., Knoll A. H.
1995. Stable isotopic composition of carbonates from the Mesoproterozoic Bangemall Group, northwestern Australia // Chemical Geology, 123, 153–71.Campbell I. H., Squire R. J.
2010. The mountains that triggered the Late Neoproterozoic increase in oxygen: The Second Great Oxidation Event // Geochimica et Cosmochimica Acta, 74, 4187–206.Chen L., Xiao S., Pang K., Zhou C., Yuan X.
2014. Cell differentiation and germ-soma separation in Ediacaran animal-like fossils // Nature, 516, 238–41.Cook P. J., Shergold J. H.
1984. Phosphorus, phosphorites and skeletal evolution at the Precambrian — Cambrian boundary // Nature, 308, 231–36.Creveling J. R. et al.
2014. Phosphorus sources for phosphatic Cambrian carbonates // Geological Society of America Bulletin, 126, 145–63.Cumming V. M., Poulton S. W., Rooney A. D., Selby D.
2013. Anoxia in the terrestrial environment during the late Mesoproterozoic // Geology, 41, 583–6.Cunningham J. A. et al.
2017. The Weng’an Biota (Doushantuo Formation): an Ediacaran window on soft-bodied and multicellular microorganisms // Journal of the Geological Society. DOI: 10.1144/jgs2016–142Glaessner M. F.
1984. The Down of Animal Life: A Biohistorical Study. Cambridge: Cambridge Univ. Press. 244 p.Grazhdankin D.
2014. Patterns of evolution of the Ediacaran soft-bodied biota // Journal of Paleontology, 88, 269–83.Ghisalberti M. et al.
2014. Canopy flow analysis reveals the advantage of size in the oldest communities of multicellular eukaryotes // Current Biology, 24, 1–5. DOI: 10.1016/j.cub.2013.12.017Hardisty D. S. et al.
2017. Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate // Earth and Planetary Science Letters, 463, 159–70.Hood A. v. S., Wallace M. W.
2015. Extreme ocean anoxia during the Late Cryogenian recorded in reefal carbonates of Southern Australia // Precambrian Research, 261, 96–111.Hoyal Cuthill J. F., Conway Morris S.
2014. Fractal branching organizations of Ediacaran rangeomorph fronds reveal a lost Proterozoic body plan // Proceedings of the National Academy of Sciences of the USA, 111, 13122–6.Huntley J. W., Xiao S., Kowalewski M.
2006. 1.3 Billion years of acritarch history: An empirical morphospace approach // Precambrian Research, 144, 52–68.Igisu M. et al.
2014. FTIR microspectroscopy of Ediacaran phosphatised microfossils from the Doushantuo Formation, Weng’an, South China // Gondwana Research, 25, 1120–38.