Прежние мелкие протоконтиненты постепенно нашли друг друга. Примерно 2,7 млрд лет назад кратоны Сан-Франсиску, Каапвааль, Зимбабве, Пилбара и, возможно, Индостанский щит сформировали материк, который иногда называют Зимваальбара. Кола, Карелия и другие части нынешней Северной и Восточной Европы собрались в Балтию, сибирские щиты — в Сибирь (Сибирскую платформу), а разросшийся Канадский щит вместе с некоторыми фрагментами будущей Западной Европы превратился в Лаврентию. Затем Балтия, Сибирь и Лаврентия, предположительно, сложились в Кенорленд (рис. 10.1). Все эти объединения проходили совсем не мирно: при столкновении континентальных масс дыбились горные цепи, а океаны схлопывались и снова открывались. Вероятно, во всех тектонических процессах существовали определенные, не до конца еще вскрытые закономерности. Так, в 1966 г. канадский тектонист Джон Тузо Уилсон на основе распределения горных пород заметил, что Атлантический океан несколько раз открывался и закрывался и его закрытие совпадало с формированием суперконтинента. Эти повторяющиеся явления теперь именуют циклами Уилсона (существование последнего суперматерика — каменноугольно-пермской Пангеи — выявил еще 100 лет назад немецкий гляциолог Альфред Вегенер). Хотя циклы Уилсона не объясняют всего многообразия глобальных тектонических событий, но суперконтиненты, которые собирали воедино более 75 % всей континентальной коры, на планете действительно появлялись примерно с интервалом 600–700 млн лет. Скажем, после распада Кенорленда 1,9 млрд лет назад образовалась Нуна. Это эскимосское слово означает землю у северного океана, а выбрано оно потому, что ядро Нуны составляли северные материки — Балтия, Сибирь и Лаврентия. 1,3 млрд лет назад распалась и она, чтобы через 700 млн лет сложилась Родиния — название этого континента происходит от русского слова «родить», буквально «дать начало» другим континентам. Окружал этот суперконтинент суперокеан Мировия. И если причины появления-исчезновения суперконтинентов еще предстоит найти, то само их существование подтверждается целым комплексом независимых доказательств. Так, палеомагнитные данные определяют широтное положение того или иного континента. Тектонические модели обрисовывают взаимную конфигурацию континентальных плит по наличию общих геологических структур и по размещению конвергентных и дивергентных границ. А состав осадочных отложений подсказывает, что, например, цирконы определенного возраста и состава, обнаруженные в Сибири, Северной Америке и Восточной Европе, имеют общий источник и могли единовременно попасть на все материки, только если их пересекал общий горный хребет.
Как уже сказано, вся эта материковая масса служила стоком для углекислого газа, что способствовало ослаблению парникового эффекта: метан оказался практически «съеден» кислородом, а Солнце все еще было на 6 % холоднее.
И первая ледниковая эра (гляциоэра) — гуронская — не заставила себя ждать. Она наступила 2,43–2,24 млрд лет назад, и с нее, по сути, начинается протерозой. Названа эта эра по ледниковым отложениям полуторакилометровой мощности, сформировавшимся на Канадском щите в районе современного озера Гурон. Слово «эра» подчеркивает, что это не было однократное событие: каждая гляциоэра длительностью в десятки и сотни миллионов лет включала несколько ледниковых периодов, подобных по временны́м рамкам нынешнему, начавшемуся 2,6 млн лет назад (14 млн лет назад — в Южном полушарии) и еще далеко не закончившемуся, и межледниковий.
Затем уровень углекислого газа значительно поднялся. Об этом свидетельствуют сами организмы, жившие в ту пору, 1,4–1,2 млрд лет назад. Так, изотопная подпись углерода из оболочек планктонных эукариот — акритарх — отражает фракционирование изотопов при парциальном давлении двуокиси углерода, в 10–200 раз превышавшем современное. Цианобактерии с обызвествленными чехлами уточняют эту цифру: все-таки не в 200 раз, а скорее в 10 (сегодняшняя атмосфера содержит 0,04 % СО2
). Именно при содержании этого газа на уровне 0,36 % и ниже у цианобактерий возникает механизм концентрации углерода, включающий активный перенос бикарбоната в клетку и его преобразование в двуокись углерода, что сопровождается выделением ионов гидроксила и, как следствие, понижением кислотности среды и осаждением карбоната кальция. Этот минерал и образует известковую оболочку вокруг бактериального чехла (рис. 10.2).