Конечно, сплошные оледенения не длились десятки миллионов лет, а прерывались потеплениями, о чем свидетельствует чередование осадочных отложений разного происхождения. В стертских отложениях Австралии, например, распознается четыре ледниковья, перемежавшихся с теплыми эпохами. Но как жизнь сохранялась под сплошным ледяным панцирем? Вероятно, в гигантских трещинах во льдах, которые раскалывались в районах выхода гидротермальных источников или при торошении, вызванном лунными приливами. Одни организмы существовали в подледных озерах, подобных современному озеру Восток в Антарктиде. Другие выживали в пузырьках воздуха во льду, как некоторые одноклеточные на Байкале, пережидающие суровые зимы от оттепели до оттепели. Третьи — в криоконитовых ямах, которые протаивали под скоплениями темной минеральной пыли — криоконита (такие ямы известны на всех крупных ледниках). Неудивительно, что на кратоне Сан-Франсиску в ленточных глинах обнаружено от 1,7 до 4 % органического вещества. Может быть, такое «скучивание» организмов на небольших площадях даже сыграло положительную роль в эволюции — именно в таких оазисах могли зародиться многоклеточные.
Остается необъяснимым, или необъясненным, лишь один пунктик: что провоцировало начало ледниковых эр? Если исключительно положение континентов, то почему между гуронской и криогеновой гляциоэрами (более миллиарда лет) глобальные оледенения не случались?
Впрочем, если на Земле в то время бурно эволюционировали эукариоты, то их эволюция должна была привести к появлению массы фитопланктона, который, в отличие от цианобактерий, производит больше органического вещества на единицу потребленного азота и фосфора. А чтобы расти, все эти одноклеточные водоросли должны были фотосинтезировать, захватывая углекислый газ. Превращаясь со временем в мортмассу, огромные объемы органического вещества уходили в бескислородные толщи океана, начинавшиеся уже на небольшой глубине, унося углерод и не давая ему окисляться и вновь возвращаться в атмосферу в виде двуокиси. В связи с этим содержание парникового газа в атмосфере могло снизиться до критического, что и привело к наступлению холодов.
Так ли было на самом деле? Эволюция фитопланктона, главным образом акритарх, неплохо запечатлена в геологической летописи: их разнообразие с начала протерозойского эона ко времени тропических оледенений возрастало почти по экспоненте (рис. 4.1 м). Однако для поглощения значительных объемов углекислого газа важно не разнообразие, а общая биомасса и размер отдельных особей (крупные формы погружаются быстрее, особенно когда слипаются вместе). Для набора биомассы требуется только подкормка (равно как и для набора массы). Косвенными свидетельствами усилившегося в это время потока органического вещества на дно служат неопротерозойские сдвиги изотопной подписи углерода в карбонатных отложениях в сторону резко негативных значений (до –10‰), предшествовавшие каждому оледенению. Поскольку в бескислородной обстановке органика разлагалась анаэробными бактериями, фракционирование ими изотопов углерода и могло выразиться в этих негативных аномалиях. В закисном океане органическое вещество разлагается благодаря восстановлению железа и сульфата, в результате чего образуется не столько двуокись углерода, сколько бикарбонат-ион, который, реагируя с железом, выпадает в осадок в виде сидерита:
2CH2
O + 8Fe3+(OH)3 → 8Fe2+ + 2HCO3- + 14OH- + 6H2O;8Fe2+
+ 8CO32- → 8FeCO3.Получившийся сидерит и формировал полосчатые железистые руды криогенового периода.
Для подкормки фитопланктона дефицитным фосфатом свою лепту могла внести и древняя наземная биота, которая, судя по некоторым седиментологическим признакам, уже существовала. Одним из показателей разрушительно-созидательной деятельности наземной биоты, т. е. химического выветривания, как раз и является рост содержания фосфора в морских отложениях. С криогенового периода (800 млн лет) массовая доля фосфора в ископаемой летописи (конкретно, в сланцах) возрастает сразу в 4 раза — с 0,051 до 0,209 %. Увеличивается и число фосфоритовых месторождений. Вероятно, наземную биоту представляли некоторые группы актинобактерий, водорослей, грибов и лишайников, которые химически и механически взламывают кристаллическую решетку. Лишайники являются симбиозом все тех же водорослей и грибов и, несмотря на свой невзрачный вид — корки на камнях, небольшие рожки и «кустики», — заметно повышают темпы химического выветривания. Актинобактерии — древняя группа прокариот — способны извлекать ионы Mg, Ca и Si из базальтов, коматиитов и гранитов в два-три и даже в десятки раз быстрее (в зависимости от породы), чем любые химические процессы.