Глубокое обучение в его сегодняшнем состоянии можно рассматривать как аналог чувствительной коры нашего головного мозга — зрительной или слуховой коры. Конечно, настоящий интеллект далеко не сводится к этому, его нужно перекомпоновать в рассуждение более высокого уровня и символическое рассуждение, с чем классический ИИ пытался разобраться в 1980-х гг.
…Мы бы хотели, чтобы эти системы доросли до символического уровня рассуждения — математики, речи и логики. Это очень важная часть нашей работы.
Итак, вот важнейшие уроки первых 30 лет исследования ИИ: программе, которая знает что-то, в любом практическом смысле, нужна способность репрезентации и рассуждения, по меньшей мере сопоставимая с той, что предлагается логикой первого порядка. На данный момент мы не знаем, какую именно форму примет эта способность. Возможно, она будет встроена в системы вероятностного рассуждения, в системы глубоко обучения или в гибридную схему, которую еще предстоит изобрести.
Приложение В. Неопределенность и вероятность
Если логика создает общий фундамент для рассуждения на основе точного знания, то теория вероятности охватывает рассуждения на основе неопределенной информации (частным случаем которой является точное знание). Неопределенность — нормальная эпистемологическая ситуация для агента в реальном мире. Хотя основные идеи теории вероятности были разработаны в XVII в., лишь недавно появилась возможность формальным образом создавать и обрабатывать большие вероятностные модели.
Теория вероятности имеет общую с логикой мысль о существовании возможных миров. Обычно начинают с определения того, что это за миры. Например, если я бросаю обычную шестигранную игральную кость, то имею шесть миров (иногда их называют
Очевиден также учет новых данных. Допустим, оракул говорит мне, что выпадет простое число (то есть 2, 3 или 5). Это исключает миры 1, 4 и 6. Я просто беру вероятности, соответствующие оставшимся возможным мирам, и пропорционально увеличиваю их так, чтобы сумма осталась равной 1. Теперь вероятность выпадения 2, 3 и 5 составляет в каждом случае 1/3, а вероятность, что мой бросок принесет четное число, становится всего 1/3, поскольку осталось лишь одно четное число, 2. Процесс обновления вероятностей с появлением новых данных является примером Байесова обновления.
Похоже, в вероятностях нет ничего сложного! Даже компьютер может складывать числа, в чем же проблема? Проблема возникает, если миров больше нескольких штук. Например, если я бросаю кость 100 раз, это дает 6100 результатов. Немыслимо начинать процесс вероятностного рассуждения, присваивая номер каждому из них в отдельности. Подсказкой, как работать с этой сложностью, служит тот факт, что броски кости являются
Допустим, я играю в настольную игру «Монополия» со своим сыном Джорджем. Моя фишка попадает на «Посещение», а Джорджу принадлежит желтый набор, имущество которого находится в 16, 17 и 19 полях от «Посещения». Следует ли ему купить дома для желтого набора сейчас, чтобы мне пришлось платить ему завышенную арендную плату в случае попадания на эти поля, или лучше подождать следующего круга? Это зависит от вероятности выпадения поля из желтого набора в нынешнем круге.
Борис Александрович Тураев , Борис Георгиевич Деревенский , Елена Качур , Мария Павловна Згурская , Энтони Холмс
Культурология / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Детская познавательная и развивающая литература / Словари, справочники / Образование и наука / Словари и Энциклопедии