Как видите, эти характеристики порождают ошеломляющее многообразие типов задач. Одно лишь перемножение вышеперечисленных вариантов дает 192 типа. Для всех них можно найти примеры в реальном мире. Некоторые виды задач обычно изучаются вне сферы ИИ: например, разработка автопилота, поддерживающего полет в заданном эшелоне, — это непрерывная динамическая задача с коротким горизонтом — такие обычно решаются в теории автоматического управления.
Очевидно, некоторые типы задач проще других. ИИ достиг большого прогресса в таких задачах, как настольные игры и пазлы, которые являются наблюдаемыми, дискретными, детерминистскими и имеют известные правила. В отношении относительно более простых задач исследователи ИИ разработали общие и достаточно эффективные алгоритмы и достигли глубокого понимания теории. Часто машины в этих случаях превосходят результативность человека. Мы можем сказать, что алгоритм является общим, если имеются математические доказательства того, что он обеспечивает оптимальные или близкие к оптимальным результаты при разумной сложности вычислений во всем классе задач; если он хорошо работает на практике при решении этих типов задач, не требуя каких-либо модификаций под конкретную задачу.
Видеоигры, например StarCraft, несколько сложнее настольных: они включают сотни движущихся частей и временные периоды в тысячи шагов, а доска лишь частично видна в любой момент времени. В каждый момент игрок может иметь выбор по меньшей мере из 1050 ходов; для сравнения: в игре го лишь около 102 ходов[57]. С другой стороны, правила известны, а мир дискретен и включает немного типов объектов. На начало 2019 г. машинные программы были так же хороши, как некоторые профессиональные игроки в StarCraft, но еще не готовы бросить вызов самым лучшим игрокам-людям[58]. Что более важно, требуется немало ориентированных на конкретную задачу усилий, чтобы этого достичь; методы общего назначения для StarCraft не вполне разработаны.
Такие задачи, как руководство правительством или преподавание молекулярной биологии,
Прогресс в движении к общности происходит, когда мы изобретаем методы, эффективные для самой трудной задачи в данном типе, или же методы, требующие меньшего количества допущений, что делает их применимыми к большему числу задач. ИИ общего назначения будет методом, применимым ко всем типам проблем и эффективно работающим в масштабных и трудных случаях, требуя очень мало допущений. Это конечная цель исследования ИИ: система, не требующая доработки под конкретную задачу, которую запросто можно «попросить» вести занятия по молекулярной биологии или руководить правительством. Она будет учиться тому, что ей нужно будет уметь, пользуясь всеми доступными ресурсами, при необходимости задавать вопросы и начнет формулировать и осуществлять работающие планы.
Такого метода общего назначения пока не существует, но мы к нему приближаемся. Возможно, вас удивит, что в значительной мере это приближение к универсальному ИИ обеспечивается исследованиями, не связанными с построением экономных систем ИИ общего назначения. Оно обеспечено изучением
Это убеждение вытекает из непонимания того, какого рода работа входит в круг задач этих систем. В действительности исследование инструментов ИИ может обеспечить и часто обеспечивает прогресс в создании универсального ИИ, особенно когда им занимаются талантливые ученые, берущиеся за задачи, которые выходят за рамки существующих общих методов. В данном случае «талантливые» означает, что подход к решению не сводится к простой кодировке действий разумного человека в такой-то ситуации, но представляет собой попытку наделить машину способностью находить решение самостоятельно.
Борис Александрович Тураев , Борис Георгиевич Деревенский , Елена Качур , Мария Павловна Згурская , Энтони Холмс
Культурология / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Детская познавательная и развивающая литература / Словари, справочники / Образование и наука / Словари и Энциклопедии