К началу 2018 г. сообщалось, что Google Photos действительно отказывается классифицировать фотографию гориллы. Получив очень четкое изображение гориллы с двумя детенышами, сервис отвечает: «Гм-м… пока не вижу это достаточно ясно»[82].
Я не собираюсь утверждать, что адаптация стандартной модели ИИ была неудачным выбором на тот момент. Очень много сил вложено в разработку различных реализаций этой модели в логических, вероятностных и обучающихся системах. Многие системы стали весьма полезны, и, как мы увидим в следующей главе, нас ждут еще более значимые достижения. В то же время мы не можем больше полагаться на обычную практику высмеивания крупных промахов целевой функции. Все более интеллектуальные машины, оказывающие все более глобальное воздействие, не позволят нам этой роскоши.
Глава 3. Как может развиваться ИИ?
Ближайшее будущее
3 мая 1997 г. начался матч между Deep Blue, шахматным компьютером IBM, и Гарри Каспаровым, чемпионом мира и, вероятно, лучшим шахматистом в истории.
С точки зрения исследователей ИИ, этот матч никоим образом не был прорывом. Победа Deep Blue, какой бы впечатляющей она ни была, всего лишь продолжила тенденцию, наблюдающуюся несколько десятилетий. Базовую концепцию шахматных алгоритмов разработал в 1950 г. Клод Шеннон[83], основные усовершенствования были сделаны в начале 1960-х гг. После этого шахматный рейтинг лучших программ неуклонно рос главным образом благодаря появлению все более быстрых компьютеров, позволявших программам дальше заглядывать вперед. В 1994 г.[84] мы с Питером Норвигом составили численные рейтинги лучших шахматных программ начиная с 1965 г. по шкале, где рейтинг Каспарова составлял 2805. Рейтинги начинались от 1400 в 1965 г. и улучшались почти по идеальной прямой в течение 30 лет. Экстраполяция линии за 1994 г. предсказывала, что компьютеры смогут обыграть Каспарова в 1997 г., — что и случилось.
Итак, с точки зрения исследователей ИИ настоящие прорывы имели место за 30 или 40 лет
Представление о прорывах в области ИИ, складывающееся у общественности из сообщений в СМИ, — ошеломляющие победы над людьми, роботы, получающие гражданство Саудовской Аравии, и т. д. — имеет очень слабое отношение к тому, что реально происходит в исследовательских лабораториях. Там много думают, обсуждают и пишут математические формулы. Идеи постоянно предлагаются, отбрасываются и открываются заново. Хорошая идея — подлинный прорыв — часто остается незамеченной в свое время, лишь впоследствии приходит понимание, что она закладывала фундамент для существенного развития ИИ, например, когда кому-то она приходит в более подходящее время. Идеи апробируются сначала на простых задачах, чтобы показать, что базовые догадки верны, затем на более сложных, в качестве проверки того, насколько хорошо они с ними справляются. Часто оказывается, что идея сама по себе не способна значительно увеличить возможности ИИ, и приходится ждать появления другой идеи, в сочетании с которой первая идея оказывается ценной.
Вся эта деятельность совершенно незаметна снаружи. В мире за стенами лабораторий на ИИ обращают внимание, только когда постепенное накопление идей и свидетельств их годности преодолевает пороговое значение: в тот момент, когда становится выгодно вкладывать деньги и усилия разработчиков в создание нового коммерческого продукта или впечатляющую демонстрацию. Тогда СМИ объявляют, что случился прорыв.
Таким образом, можно ожидать, что многие другие идеи, осваиваемые в исследовательских лабораториях мира, в следующие несколько лет преодолеют порог коммерческой целесообразности. Это будет происходить все чаще по мере того, как растет уровень инвестиций, а мир все охотнее воспринимает приложения ИИ. В этой главе приводятся примеры того, с чем мы можем столкнуться в скором времени.
Попутно я буду указывать на определенные недостатки этих технологических достижений. Вероятно, вы сумеете найти многие другие, но не беспокойтесь, я обращусь к ним в следующей главе.
Сначала область, в которой действовало большинство компьютеров, была, в сущности, «безвидна и пуста»: входные данные поступали исключительно с перфокарт, а единственным методом вывода было распечатывание символов на строчном принтере. Вероятно, поэтому большинство исследователей считали интеллектуальные машины устройствами для ответов на вопросы. Восприятие машин как
Борис Александрович Тураев , Борис Георгиевич Деревенский , Елена Качур , Мария Павловна Згурская , Энтони Холмс
Культурология / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Детская познавательная и развивающая литература / Словари, справочники / Образование и наука / Словари и Энциклопедии