Однако это вовсе не означает, что потенциальная бесконечность не имеет отношения к космологии. Заслуга теории множеств заключается, кроме всего прочего, в том, что она, в сущности, показала неразрывную связь актуальной и потенциальной бесконечности. Математики хотели ограничиться признанием одной лишь потенциальной бесконечности. Но как показал Кантор, потенциальная бесконечность фактически предполагает актуальную. Если теория множеств и вместе с нею актуальная бесконечность в конце концов получили всеобщее признание, то это потому, что теория оказалась мощнейшим математическим инструментом, притом универсальным. К казавшейся совершенно еретической точке зрения о том, что бесконечность может рассматриваться не как процесс, который не может быть завершен, а как нечто данное, законченное, постепенно привыкли. Но актуальная бесконечность вовсе не устранила потенциальную. Не только потенциальная бесконечность предполагает актуальную, но, по крайней мере, в известной степени и наоборот, актуальная предполагает потенциальную. Действительное, наименьшее из трансфинитных чисел, алеф нуль, через которое определяются остальные, —
Из этого, между прочим, видно, что и то решение проблем бесконечности, которое дается теорией множеств, не может быть окончательным. Обратимся опять к тонкому знатоку глубоких проблем математики Г. Вейлю. «В системе математики, — пишет он, — имеются два обнаженных пункта, в которых она, может быть, соприкасается со сферой непостижимого. Это именно принцип построения ряда натуральных чисел и понятие континуума. Все остальное… представляет собой задачу формальной логики, не таящую уже в себе никаких трудностей и загадок… Теория множеств надеется и в этих двух пунктах возвести прочную плотину и запрудить поток бесконечного, грозящий затопить в своем течении наш дух[373]
». Такая плотина еще не возведена и похоже, что не может быть возведена средствами теории множеств в существующем виде.Каков, однако, прообраз потенциальной бесконечности в космологии? В общем виде ответ на этот вопрос, видимо, может быть примерно таков. Понятие актуальной бесконечности в математике идеализирует действительное положение вещей в том смысле, что рассматривает их как некую готовую, заданную, устойчивую совокупность. Но релятивистская космология установила нестационарность Вселенной (ее составных частей). Поэтому свойства Вселенной, в том числе и пространственно-временные, представляют устойчивое в изменении, и могут существовать лишь как результат многообразных процессов, нарушающих устойчивость. Потенциальная бесконечность является отражением этой стороны дела.
2.8. Метаматематическая бесконечность. Этим намеренно неоднозначным термином я хочу привлечь внимание к возможности дальнейшего обобщения понятия бесконечности в различных направлениях, которые по-разному выводят за пределы представлений, существующих в современной математике.
Во-первых, мыслимы обобщения основного для современной релятивистской космологии аспекта бесконечности — метрического — и усложнение основного понятия метрической геометрии — понятия кривизны. Одно из простейших предположений этого рода — наличие у пространства или пространства-времени второй кривизны (спиральности).
Во-вторых, не исключена возможность дальнейшего обобщения самой геометрии в смысле обнаружения у пространства-времени свойств, еще более устойчивых, чем топологические. При этом может претерпеть изменение и наиболее общее в геометрии понимание бесконечности — топологическое.
В-третьих, возможны изменения, которые явились бы метаматематическими в буквальном значении этого слова, т. е. выводящими за теоретико-множественные основы современной математики. Не только вся релятивистская теория тяготения, из которой исходит современная космология, но и теория поля вообще и вся теоретическая физика в целом строится на том самом теоретико-множественном понимании континуума, которое, по словам Вейля, является одним из двух обнаженных пунктов современной математики. Центральный пункт этого понимания — представление о точечном множестве, множестве, в котором можно с помощью понятия предельных точек подмножеств ввести понятие непрерывности. Представление об пространственно-временном континууме как реализации математического континуума (актуально бесконечного) может подвергнуться ревизии в различных направлениях, мыслимо, например, что макроскопическая непрерывность (пространства, времени, движения, существования частиц) имеет статистический характер, что в основе ее лежит дискретность пространства, времени, траектории, самого бытия частиц.