Читаем Современная космология: философские горизонты полностью

Однако это вовсе не означает, что потенциальная бесконечность не имеет отношения к космологии. Заслуга теории множеств заключается, кроме всего прочего, в том, что она, в сущности, показала неразрывную связь актуальной и потенциальной бесконечности. Математики хотели ограничиться признанием одной лишь потенциальной бесконечности. Но как показал Кантор, потенциальная бесконечность фактически предполагает актуальную. Если теория множеств и вместе с нею актуальная бесконечность в конце концов получили всеобщее признание, то это потому, что теория оказалась мощнейшим математическим инструментом, притом универсальным. К казавшейся совершенно еретической точке зрения о том, что бесконечность может рассматриваться не как процесс, который не может быть завершен, а как нечто данное, законченное, постепенно привыкли. Но актуальная бесконечность вовсе не устранила потенциальную. Не только потенциальная бесконечность предполагает актуальную, но, по крайней мере, в известной степени и наоборот, актуальная предполагает потенциальную. Действительное, наименьшее из трансфинитных чисел, алеф нуль, через которое определяются остальные, — это мощность множества натурального ряда чисел. Таким образом, то, что мыслится как завершенное, независимое от какого бы то ни было процесса, определяется здесь через процесс, который не может быть завершен.

Из этого, между прочим, видно, что и то решение проблем бесконечности, которое дается теорией множеств, не может быть окончательным. Обратимся опять к тонкому знатоку глубоких проблем математики Г. Вейлю. «В системе математики, — пишет он, — имеются два обнаженных пункта, в которых она, может быть, соприкасается со сферой непостижимого. Это именно принцип построения ряда натуральных чисел и понятие континуума. Все остальное… представляет собой задачу формальной логики, не таящую уже в себе никаких трудностей и загадок… Теория множеств надеется и в этих двух пунктах возвести прочную плотину и запрудить поток бесконечного, грозящий затопить в своем течении наш дух[373]». Такая плотина еще не возведена и похоже, что не может быть возведена средствами теории множеств в существующем виде.

Каков, однако, прообраз потенциальной бесконечности в космологии? В общем виде ответ на этот вопрос, видимо, может быть примерно таков. Понятие актуальной бесконечности в математике идеализирует действительное положение вещей в том смысле, что рассматривает их как некую готовую, заданную, устойчивую совокупность. Но релятивистская космология установила нестационарность Вселенной (ее составных частей). Поэтому свойства Вселенной, в том числе и пространственно-временные, представляют устойчивое в изменении, и могут существовать лишь как результат многообразных процессов, нарушающих устойчивость. Потенциальная бесконечность является отражением этой стороны дела.

2.8. Метаматематическая бесконечность. Этим намеренно неоднозначным термином я хочу привлечь внимание к возможности дальнейшего обобщения понятия бесконечности в различных направлениях, которые по-разному выводят за пределы представлений, существующих в современной математике.

Во-первых, мыслимы обобщения основного для современной релятивистской космологии аспекта бесконечности — метрического — и усложнение основного понятия метрической геометрии — понятия кривизны. Одно из простейших предположений этого рода — наличие у пространства или пространства-времени второй кривизны (спиральности).

Во-вторых, не исключена возможность дальнейшего обобщения самой геометрии в смысле обнаружения у пространства-времени свойств, еще более устойчивых, чем топологические. При этом может претерпеть изменение и наиболее общее в геометрии понимание бесконечности — топологическое.

В-третьих, возможны изменения, которые явились бы метаматематическими в буквальном значении этого слова, т. е. выводящими за теоретико-множественные основы современной математики. Не только вся релятивистская теория тяготения, из которой исходит современная космология, но и теория поля вообще и вся теоретическая физика в целом строится на том самом теоретико-множественном понимании континуума, которое, по словам Вейля, является одним из двух обнаженных пунктов современной математики. Центральный пункт этого понимания — представление о точечном множестве, множестве, в котором можно с помощью понятия предельных точек подмножеств ввести понятие непрерывности. Представление об пространственно-временном континууме как реализации математического континуума (актуально бесконечного) может подвергнуться ревизии в различных направлениях, мыслимо, например, что макроскопическая непрерывность (пространства, времени, движения, существования частиц) имеет статистический характер, что в основе ее лежит дискретность пространства, времени, траектории, самого бытия частиц.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже