Насколько я могу судить, те частные, но очень интересные результаты, которые получены в области топологии космологических моделей, получались двумя путями (или их сочетанием). Первый путь — это нахождение систем отсчета, наиболее подходящих к характеру задачи (подходящих с точки зрения тех или иных физических или математических критериев), и исследование свойств пространства или пространства-времени найденных систем отсчета. В качестве примера использования физических критериев можно указать на вакуольную модель Эйнштейна и Страуса[362]
или известную абсолютно вращающуюся модель Геделя[363], которую считают важнейшим достижением теоретической космологии после Эйнштейна и Фридмана[364]. Пример использования математических критериев — ряд работ последних лет о внутреннем решении Шварцшильда (см., например5); к этим работам придется вновь обратиться в 2.4.4. Второй путь — это выяснение топологии данного многообразия путем его погружения в евклидово многообразие большего числа измерений. Так, например, пространство-время простейших (однородных изотропных) моделей может быть вложено в пятимерное евклидово многообразие; в силу равноправия пространственных координат можно ограничиться одной из них и тогда получаются чрезвычайно наглядные «диаграммы Робертсона[365]». В некоторых более сложных случаях четырехмерное пространство-время «не помещается» в пятимерное евклидово многообразие, и приходится прибегать к шестимерному[366]. Но и тогда можно получить довольно наглядные диаграммы в виде трех- и двухмерных проекций интересующего нас сечения многообразия.Сочетая указанные пути, по-видимому, можно продвинуться довольно далеко в выяснении топологических типов физического пространства-времени.
2.4.3. Кривизна метагалактического пространства, если она вообще существует, т. е. отлична от нуля, столь мала, что не может быть и речи об определении ее с помощью, например, астрономической триангуляции. Она вычисляется весьма косвенным путем, исходя из предсказываемой теорией связи метрики пространства с теми или иными наблюдательными данными внегалактической астрономии, причем получение последних находится на самом пределе возможности даже крупнейших современных инструментов. Но принципиальная сторона вопроса ясна: возможность наблюдательной проверки метрических свойств пространства следует из релятивистской теории тяготения, связывающей метрическую геометрию с физикой.
Вопрос о наблюдательной проверке топологических свойств пространства, а тем более, пространства-времени, намного сложнее, ибо не существует физической теории, которая связывала бы эти свойства с каким-либо конкретным физическим «агентом» — полем, типом взаимодействия и т. п. Поэтому здесь связь с опытом носит еще более опосредованный характер, чем в случае метрических свойств. Можно, например, искать наблюдательного подтверждения тех решений уравнений тяготения, которые связаны с «необычной» топологией; если такое подтверждение обнаруживается, то это может рассматриваться как косвенное свидетельство в пользу существования у реального пространства именно таких топологических свойств.
На одном из примеров такого рода стоит остановиться подробнее из-за его принципиального значения для проблемы бесконечности и ее связи с гравитацией.
В течение ряда лет делались попытки устранить сингулярности из космологических решений уравнений Эйнштейна или, по крайней мере, выяснить, насколько тесно они связаны с самими уравнениями. Сейчас эту трудную задачу можно, видимо, считать решенной.
Общий случай произвольного распределения материи не приводит к появлению физической особенности и связанной с нею ограниченности времени, о которой шла речь в 2.3.2. Этот вывод относится и к важному, с точки зрения астрономических приложений, случаю пространственной сферической симметрии2
. Однако история науки любит парадоксы, и почти одновременно с устранением недостатка теории стало выясняться, что это, возможно, вовсе и не недостаток, а плодотворная черта теории: реальные гравитационные процессы действительно могут иметь исходным или завершающим пунктом состояние материи со сверх-ядерной плотностью, взрывной деформацией пространства и вырожденной метрикой. Открытие «сверхзвезд»3 повлекло за собой очень интенсивное изучение таких процессов — гравитационного коллапса и антиколлапса. Можно даже говорить о зарождении на стыке астрофизики, космологии и космогонии новой научной дисциплины — релятивистской астрофизики.