Выше (2.4.3) уже говорилось о связи между проблемами топологии и причинности (случайности). Связь эта, по-видимому, идет еще дальше, проникая в теоретико-множественное понимание континуума. Современная математика, возможно, нащупывает эту связь в исследованиях, связанных с мерой множества (в смысле Лебега). Послед-няя представляет собой интересный пример меры в общем (философском) смысле; в то же время она позволяет оперировать с такими множествами (абстрактными пространствами), которые плохо поддаются иным подходам; вместе с тем она является одним из центральных понятий в современной теории вероятностей, т. е. в науке о случайном (наука — отнюдь не враг случайностей!).
И все же наибольший «практический» интерес представляют не те метаматематические аспекты бесконечности, которые связаны с буквальным пониманием этого прилагательного, а с более распространенным, включающим в метаматематику те разделы математики, для которых еще не найдено (и, возможно, не будет найдено) место в старых, классических ее разделах (теория информации, теория игр, конечная, или дискретная математика, математическая логика и т. д.). Особенно важен логический аспект проблемы бесконечности и, соответственно, изучение этой проблемы средствами математической логики. Несмотря на то, что этот аспект весьма важен и для космологии, ему, по-видимому, уделялось очень немного внимания. Это является следствием характерной для нашего времени дифференциации науки, малой осведомленности специалистов о действительном положении дел за пределами узкой области своих интересов. Физики часто склонны думать, что вся сложность проблемы бесконечности Вселенной в том, что наблюдательные данные пока слишком ненадежны, что же касается математической, тем более — логической стороны дела, то, слава богу, здесь все ясно. Математики, наоборот, склонны думать, что хоть в физике (космологии) все достаточно ясно, поскольку все решается наблюдением, экспериментом. Специалисты по логике, возможно, полагают, что трудности есть и в математике, и в физике, но не логического порядка.
Между тем, пикантность ситуации состоит прежде всего в том, что в утверждениях типа «Космология доказывает, что Вселенная бесконечна (конечна)» чаще всего остается совершенно неясным, что понимается под космологи-ей, под доказательством, под Вселенной и под бесконечностью. Действительно, уже одно обилие прилагательных (астрономическая, физическая, наблюдательная, теоретическая и т. п. космология) свидетельствует о том, что применяющие их авторы сознают неопределенность термина «космология»; обычно, однако, эти прилагательные тоже ничего не проясняют, кроме желания автора подчеркнуть независимость своих построений от философии (и, возможно, логики). «Доказывает» в данном контексте тоже может совершенно ничего не доказывать, ибо из многовековой истории, попыток доказать пятый постулат Евклида хорошо известно, насколько призрачными становятся даже геометрические доказательства, стоит им только соприкоснуться с бесконечным. «Вселенная» в одной только физико-математической литературе употребляется в пяти-шести существенно различных значениях, причем на протяжении одной страницы или даже одной фразы может происходить переход к другому значению. Наконец, как мы видели, существует по крайней мере десяток разных типов «бесконечности». Во всем утверждении «Космология доказывает, что Вселенная бесконечна (конечна)» остается единственное недвусмысленное слово — служебное слово «что». Этот пример достаточно красноречиво говорит о необходимости хотя бы минимального уточнения логического статута основных понятий, связанных с бесконечностью.
Специально вопрос о логическом статуте бесконечности в релятивистской космологии исследует Э.М. Чудинов. Полученные им результаты, если я правильно их понимаю, могут быть резюмированы так. Бесконечность не выводима, не доказуема и не опровержима. Всякое доказательство бесконечности чего бы то ни было с самого начала предполагает существование чего-то бесконечного. При этом, разумеется, очень важно, чтобы в посылке не фигурировала та же самая бесконечность (тот же тип бесконечности), что и в выводе. Но, в конечном счете, утверждение о бесконечности всегда носит аксиоматический характер. Таково положение в классической математике. Но поскольку реляти-вистская космология использует именно такое понятие бесконечности — метрическое, являющееся частным случаем теоретико-множественного, — все это относится и к космологической бесконечности.
Эти выводы очень важны, и к ним придется вернуться В
§ 4.