Очевидно, это предсказание не соответствовало истине. Но что же мешает энергии, содержащейся внутри полости, неограниченно увеличиваться в направлении глубокой ультрафиолетовой части спектра? Планк начал работать над этой задачей в 1897 году и интенсивно трудился над нею в течение трех лет. Успех пришел к нему в виде возникшего в последнюю минуту озарения, о котором он сообщил 19 октября 1900 года на заседании Берлинского физического общества. Тем же вечером друзья Планка сравнили его новую формулу с экспериментально полученными данными. На следующее утро они сообщили ему об их точном соответствии. «Более поздние измерения все снова и снова подтверждали формулу для излучения, и притом тем точнее, чем к более тонким методам измерений переходили, – гордо писал Планк в 1947 году, в конце своей долгой жизни»[323]
[324].Планк разрешил проблему излучения, предположив, что колеблющиеся частицы могут излучать лишь на некоторых определенных энергиях. Разрешенные энергии определяются новым числом – «…необходимо было ввести некоторую новую универсальную постоянную, которую я обозначил через
Планку, который был консерватором до мозга костей, не хотелось исследовать радикальные следствия из найденной им формулы излучения. Это сделал другой человек – Альберт Эйнштейн. В опубликованной в 1905 году статье, которая впоследствии принесла ему Нобелевскую премию, Эйнштейн применил идею Планка строго определенных дискретных порций энергии к проблеме фотоэлектрического эффекта. Свет, падающий на некоторые металлы, выбивает из них электроны; подобный эффект используется в современных солнечных батареях, питающих космические аппараты. Но энергия электронов, выбитых из металла, не зависит от яркости света, как казалось бы логичным предположить. Вместо этого она зависит от его
Эйнштейн разглядел в этом странном факте квантовые проявления. Он предложил еретическую гипотезу о том, что свет, распространяющийся, как показывали в течение многих лет точные научные опыты, в виде волн, на самом деле распространяется в виде маленьких отдельных пакетов – частиц, – которые он назвал «квантами энергии». Такие фотоны (как мы их теперь называем), писал он, имеют дискретную энергию
Такое развитие знания позволило Бору взяться за проблему механической неустойчивости модели атома Резерфорда. В июле, в период подготовки «небольшой статьи, которую можно будет показать Резерфорду», у него уже появилась основная идея. Она заключалась в следующем: поскольку классическая механика предсказывает, что атом, по Резерфорду, с маленьким, массивным центральным ядром, окруженным электронами, должен быть неустойчивым, а на самом деле атомы представляют собой одни из самых устойчивых систем в мире, значит, классическая механика не способна описывать такие системы и должна уступить место квантовому подходу. Планк предложил квантовые принципы, чтобы спасти законы термодинамики; Эйнштейн распространил квантовые идеи на свет; Бор предлагал теперь ввести квантовые принципы в самый атом.
В течение всей осени и начала зимы, вернувшись в Данию, Бор разбирался со следствиями из этой идеи. Трудность с атомом Резерфорда заключалась в том, что ничто в его строении не обеспечивало его устойчивости. Если речь шла об атоме с несколькими электронами, он должен был разваливаться на части. Даже в случае атома водорода всего с одним (механически устойчивым) электроном классическая теория предсказывала, что такой электрон должен испускать свет при изменении направления орбитального движения вокруг ядра и, теряя таким образом энергию, смещаться по спиральной траектории к ядру и в конце концов упасть на него. С точки зрения ньютоновской механики атом Резерфорда – миниатюрная солнечная система – должен был быть либо невозможно большим, либо невозможно маленьким.
Василий Кузьмич Фетисов , Евгений Ильич Ильин , Ирина Анатольевна Михайлова , Константин Никандрович Фарутин , Михаил Евграфович Салтыков-Щедрин , Софья Борисовна Радзиевская
Приключения / Публицистика / Детская литература / Детская образовательная литература / Природа и животные / Книги Для Детей